

Sadaharu Uehara (KEK)

PHIPSI13

September 9-12, 2013

Sapienza University of Rome

KEKB Accelerator and Belle Detector

Two-Photon Collisions and Hadron/QCD Physics

Hadron production from collisions of virtual or quasi-real photons

- Perturbative/Non-perturbative QCD
- Resonances
- Hadron/photon form factors

Single resonance formation in $\gamma\gamma^{(*)}$ collisions

Zero-tag with p_t-balance requirement for the hadron system $Q^2 << W^2$ ($\gamma\gamma$ c.m. energy), $Q^2 << E_{QCD}^2$ (Energy scale of QCD) Measurement of $\Gamma\gamma\gamma$ B(\rightarrow final state)

Single-tag process (Q² dependence in γγ* collisions) Measurement of transition form factor

The first measurement of the differential cross section in

W = 1.05 - 2.4 GeV with 972 fb⁻¹ Belle data

W: c.m. energy of $\gamma\gamma$ collisions

arXiv:1307.7457[hep-ex], submitted to PTEP (Progress of Theoretical and Experimental Physics)

Study of resonances including

```
exotic candidates (e.g. glueball state)
```

This process is dominated by resonances in W < \sim 2.4 GeV

W > 2.4 GeV -- Update of the previous Belle publication (W.T.Chen et al., PLB651, 15 (2007), 397.6fb⁻¹) QCD study – Angular and W dependences

Charmonia: Partial decay widths for χ_{c0} and χ_{c2}

Search for $\chi_{c0}(2P)$ etc., which is to be 3.80 – 3.93 GeV

Cross section integrated over the angle

Formula for differential cross section

- At low energy (W < 3 GeV) $\frac{d\sigma}{d\Omega} = \left|SY_0^0 + D_0Y_2^0 + G_0Y_4^0\right|^2 + \left|D_2Y_2^2 + G_2Y_4^2\right|^2$
- S, D₀, G₀, D₂, G₂ Partial wave amplitudes
 J = L = 0, 2, 4 (even only) and total two-photon helicity = 0 or 2
 give W dependence of each partial wave

assuming resonance and continuum components

- Y_J^m : spherical harmonics
 - Each determines the angular dependence of the wave
 - But, not mutually independent

6

Fit with S and D waves for W < 2.0 GeV

Fit results for W < 2.0 GeV

$f_2(1270) - a_2(1320)$ interference and $f_2'(1525)$

Parameter	Sol. H	Sol. L	H,L combined	Incoh. fit	PDG [23]
χ^2/ndf	375.09/387	375.22/387	_	406.6/388	_
$\phi_{a_2(1320)}$ (deg.)	$178.1^{+1.7+6.7}_{-1.3-12.5}$	$172.6^{+1.3+6.7}_{-1.0-3.1}$	$172.6^{+6.0+12.2}_{-0.7-7.0}$	$173.6^{+1.3}_{-1.4}$	_
$Mass(f'_2(1525)) (MeV/c^2)$	$1526.1^{+0.9+2.9}_{-1.0-2.8}$	$1524.3^{+1.0+1.6}_{-0.9-1.1}$	$1525.3^{+1.2+3.7}_{-1.4-2.1}$	1530.7 ± 0.4	1525 ± 5
$\Gamma_{\rm tot}(f_2'(1525))$ (MeV)	$83.4^{+1.9+2.0}_{-1.7-3.4}$	$81.8^{+2.3+4.4}_{-2.0-0.9}$	$82.9^{+2.1+3.3}_{-2.2-2.0}$	82.7 ± 1.4	73^{+6}_{-5}
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})(f_2'(1525))$ (eV)	113^{+25+43}_{-28-77}	$48 \pm 4^{+33}_{-10}$	$48^{+67+108}_{-8}$	79.1 ± 1.4	72 ± 7

Two solutions are found, and they are combined

- **Destructive interference** btw. f_2 (1270)and a_2 (1320) confirmed
- First attempt to include interference effect in measuring $\Gamma_{\gamma\gamma}B(K\overline{K})$ of $f_{2}'(1525)$.

Fit results for W < 2.0 GeV (cont.)

$f_{J}(1710)$

Parameter		$f_0(1)$	$f_2(17)$	10) fit		
	fit-H	fit-L	H,L combined	PDG	fit-H	fit-L
χ^2/ndf	694.2/585	701.6/585	-	_	796.3/585	831.5/585
$\operatorname{Mass}(f_J)$ (MeV/ c^2)	1750^{+5+29}_{-6-18}	1749^{+5+31}_{-6-42}	1750^{+6+29}_{-7-18}	1720 ± 6	1750^{+6}_{-7}	1729^{+6}_{-7}
$\Gamma_{\rm tot}(f_J)$ (MeV)	138^{+12+96}_{-11-50}	145^{+11+31}_{-10-54}	139^{+11+96}_{-12-50}	135 ± 6	132^{+12}_{-11}	150 ± 10
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})_{f_J}$ (eV)	12^{+3+227}_{-2-8}	21^{+6+38}_{-4-26}	12^{+3+227}_{-2-8}	unknown	$2.1^{+0.5}_{-0.3}$	1.6 ± 0.2

Scalar rather than tensor! (in contrast to L3) $f_0(1710)$: $\Gamma_{\gamma\gamma}$ >O(10 eV) *indicates not likely a pure glueball*

9

Fit Results for resonances in W>2.0 GeV

$f_2(2200)-f_0(2500)$ is the best solution (in all trials of J= 0, 2, 4)

• The resonance parameters

Parameter	$f_2(2200)$	$f_0(2500)$
${\rm Mass}\;({\rm MeV}/c^2)$	2243^{+7+3}_{-6-29}	$2539 \pm 14^{+38}_{-14}$
$\Gamma_{\rm tot} ({\rm MeV})$	$145 \pm 12^{+27}_{-34}$	$274_{-61-163}^{+77+126}$
$\Gamma_{\gamma\gamma}\mathcal{B}(K\bar{K})$ (eV)	$3.2^{+0.5+1.3}_{-0.4-2.2}$	40^{+9+17}_{-7-40}

• Significances

- 3.4 σ for $f_2(2200)$ over $f_0(2200)$
- 4.3 σ for $f_0(2500)$ over $f_2(2500)$ evaluated from min.($\Delta \chi^2$) for every sys. source

Charmonia χ_{c0} and χ_{c2}

QCD Studies: Angular dependence

W-dependence

$\sigma \propto W^{-n}$ pQCD predictions

000

" $\gamma\gamma \rightarrow$ meson pair" (six final states) from Belle

QCD Test in 2.4 – 4.1 GeV energy region

				Physics	cover	ed
Process	Reference BELLE	Int.Lum. (fb ⁻¹)	γγ c.m. Energy (GeV)	Light Mesons	QCD	Char- monia
$\pi^+\pi^-$	PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	87.7 85.9 85.9	2.4 - 4.1 0.8 - 1.5 0.8 - 1.5	* *	\checkmark	V
K+K-	EPJC 32, 323 (2003) PLB 615, 39 (2005)	67 87.7	1.4 - 2.4 2.4 - 4.1	\checkmark	~	1
$\pi^0\pi^0$	PRD 78, 052004 (2008) PRD 79, 052009 (2009)	95 223	0.6 - 4.0 0.6 - 4.0	イイ	√	\checkmark
$K^0{}_SK^0{}_S$	PLB 651, 15 (2007) arXiv:1307.7457[hep-ex](NEW)	397.1 972	2.4 - 4.0 1.05 - 4.0	1	$\sqrt[4]{1}$	1
ηπ ⁰	PRD 80, 032001 (2009)	223	0.84-4.0	\checkmark	√	
ηη	PRD 82, 114031 (2010)	393	1.1-4.0	\checkmark		1

Differential cross section $d\sigma/d|\cos \theta^*|$ for these reaction processes are measured.

000

Summary of the six channels

mode	W	$\sin^{-4}\theta^*$	W [0	GeV]	$\left \cos\theta^*\right $	$\sim \sin^{-4}$	θ*	for charged meson pairs
$K^{+}K^{-}$ $K^{0}_{S}K^{0}_{S}$	Wo sin ^o	$\frac{1}{2} \frac{1}{2} \frac{1}$	3.0 - 3.0 - 2.6 -	4.1	< 0.6 < 0.8	S.J.Brodsky	y, <mark>G.P</mark>	2 by pQCD 2.Lepage, PRD 24, 1808 (1981)
$\pi^0\pi^0$	Better agreemen Approaches si	t with $\sin^{-4} \theta^* + b \cos \theta^*$ in $^{-4} \theta^*$ above 3.1 GeV	2.4 -	4.1	< 0.8			
$\eta \pi^0$	Good agrees Poo	ment above 2.7 GeV	3.1 -	4.1	< 0.8		↓Cr	oss-section ratio
ηη	Close to sin	$^{-6}\theta^*$ above 3.0 GeV	2.4 -	3.3	< 0.9			σ(π0π0): σ(ηπ0): σ(ηη)
↑A	ngular deper	idence	Tl	heory ((Brodsky η in	and Lepage) SU(3) octet)	$1: 0.24 R_f: 0.36 R_f^2$
			Т	heory	V _P	= -18 deg		1: $0.46R_f$: $0.62 R_f^2$
J	Slope param	eter			Be	lle		1: (0.48±0.06) : (0.37±0.04)
Process	n	W range (GeV)		ec	$ \sin \theta^* \ ran$	ge.	$R_f: S$	Squared form factor ratio of η/π^0
ηη	$7.8\pm0.6\pm0.4$	2.4 - 3.3			< 0.8	σ(K+K-)	/σ(π	+π-)
$\eta \pi^0$	$10.5\pm1.2\pm0.5$	3.1 - 4.1			< 0.8	= ().89 :	\pm 0.04(stat.) \pm 0.15(syst.)
$\pi^0\pi^0$	$8.0 \pm 0.5 \pm 0.4$	3.1 - 4.1 (3.3 - 3.6 excl)	luded)		< 0.8	$\sigma(\pi^0\pi^0)/\sigma$	5 (π+1	$\pi^{-}) = 0.32 \pm 0.03 \pm 0.05,$
$\frac{K_S K_S}{\pi^+ \pi^-}$	70+04+15	2.0 = 4.0 (3.3 = 3.0 exc)	iuueu)	1	< 0.6	$\sigma(K^0_{S}K^0)$	ς)/σ((K + K -)
K^+K^-	$7.3 \pm 0.3 \pm 1.5$ $7.3 \pm 0.3 \pm 1.5$	3.0 - 4.1 3.0 - 4.1			< 0.6		(J ²	changes ~ 0.10 to ~ 0.03

() () () ()

π^0 Transition Form Factor

 $\gamma\gamma * \rightarrow \pi^0$

Coupling of neutral pion with two photons Good test for QCD at high Q²

Single-tag π^0 production in two-photon process with a large-Q² and a small-Q² photon

Theoretically calculated from pion distribution amplitude and decay constant $F(Q^2) = \frac{\sqrt{2}f_{\pi}}{3} \int T_H(x,Q^2,\mu)\phi_{\pi}(x,\mu)dx$

Measurement:

 $\begin{aligned} |F(Q^2)|^2 &= |F(Q^2,0)|^2 &= (d\sigma/dQ^2)/(2A(Q^2)) & A(Q^2) \text{ is calculated by QED} \\ |F(0,0)|^2 &= 64\pi\Gamma_{\gamma\gamma}/\{(4\pi\alpha)^2m_R^3\} \end{aligned}$

Detects e (tag side) and π^0

 $Q^2 = 2EE'(1 - \cos \theta)$ from energy and polar angle of the tagged electron

BaBar's Measurement

 π^0 transition form factor (TFF) measured by BaBar is larger than the asymptotic pQCD prediction above Q²>10GeV²

Below Q²<8GeV², the BaBar result supports the CLEO result.

η and η' TFFs from BaBar **PRD 84, 052001(2011)** are consistent with pQCD predictions.

Explanation of this situation for the (π^0, η, η') -TFF's within standard QCD calculations is difficult.

Belle measurement: Extraction of π^0 Yield

Belle result

The cross sections from p-tag and e-tag are evaluated, separately, and then combined.

 Q^2_{max} = 1.0 GeV² for the less-virtual photon Corrected for \sqrt{s} = 10.58 GeV

π^0 Transition Form Factor

No rapid growth above Q²>9GeV² is seen in Belle result.

 $^{\sim}$ 2.3 σ difference between Belle and BaBar in 9 – 20 GeV^2

Fit with an asymptotic parameter

 $Q^{2}|F(Q^{2})| = BQ^{2}/(Q^{2}+C)$ B = 0.209 ± 0.016 GeV Consistent with the QCD value (0.185GeV)

S.Uehara, Belle, Phipsi13, Sept. 2013

20

Summary

- $d\sigma/d|\cos\theta^*|$ of $\gamma\gamma \rightarrow K^0_s K^0_s$ is measured for the first time for 1.05<W <2.4 GeV
 - $f_2(1270)$ and $a_2(1320)$ interfere indeed destructively
 - $f_0(1710)$ is favored over $f_2(1710)$, $\Gamma\gamma\gamma > O(10 \text{ eV})$ Not likely a pure glueball $f_2(2200)$ and $f_0(2500)$ favored
- QCD test using measurements of six processes of $\gamma\gamma \rightarrow meson pair$

($\pi^{+}\pi^{-}$, $K^{+}K^{-}$, $\pi^{0}\pi^{0}$, $K^{0}{}_{s}K^{0}{}_{s}$, $\eta\pi^{0}$, $\eta\eta$, for W = 2.4 – 4.1 GeV)

- W-dependence of $K_{s}^{0}K_{s}^{0}$, n ~10 predicted by pQCD, is confirmed

 $\pi^+\pi^-$, K⁺K⁻ (n=6 predicted, n=7 – 8 measured)

- Systematic QCD studies using W and angular dependences and cross section ratio of these exclusive processes are now possible
- Measurement of $\gamma\gamma * \rightarrow \pi^0$ transition form factor
 - Steep increase in $Q^2 > \sim 9 \text{ GeV}^2$ observed by BaBar is not seen by Belle
 - Belle result is consistent with the QCD asymptotic value

backup

Nature of
$$\gamma \gamma \rightarrow R \rightarrow K^0_{\ S} K^0_{\ S}$$

- $R = f_J$ or a_J (J = even)
- Destructive interference between f_j and a_j

$$\left(\left|\phi_{a2} - \phi_{f2}\right| = 180^{\circ}\right)$$

(D. Faiman, H.J. Lipkin and H.R. Rubinstein, PL 59B,269 (1975))
 based on OZI (Okubo-Zweig-Iizuka) rule and isospin

Selection Criteria

4 Pions from 2 Ks's

- L4 (filtering) brings non-negligible inefficiency (At least 1 track with pt > 0.3GeV, dr<1cm and |dz|< 4cm)
- Trigger restricted in bit#3(ff_t2oc, Trigger A)

#27(loe_fs_o, Trigger B)

#24(hadron_a=loe_sss_tc, Trigger C)

- LowMult 4track (previous page)
- 4 charged pions (L(K)/(L(K)+L(π))<0.8) with $|\Sigma \mathbf{p}_t|$ <0.2 GeV/c
- No neutral pion candidate with p_t>0.1 GeV/c
- Just two Ks candidates with

z-matching @vertex $|\Delta z| < p_{K}[cm/GeV/c] + 1.6 cm \pi \pi$ invariant mass@vertex $|M_{\pi\pi} - m_{K}| < 20 MeV/c^{2}$

- Two $M_{\pi\pi}$ mass conditions: $|M_{K1} M_{K2}| < 10 \text{ MeV/c}^2$
- Vertices off IP (only for W>2GeV) :

 r_{vi} > (W - 2GeV) x 0.1 cm/GeV

Selection Criteria (continued)

- The 2 Ks-vertex distances and tr.-momentum relations etc.
- Distance between the vertices in the rφ , dVr > +0.5 cm
 (dVr has a sign according to the relative momentum of the 2 Ks's)
- 3D distance dV > 0.7 cm OR 2D distance dVr > +0.3 cm
- Projected vertex distance on the relative momentum $\delta v < 0.7$ cm $\delta_V = |(r_{V2} - r_{V1}) \times (p_{t2} - p_{t1})|/|p_{t2} - p_{t1}| = |r_{V2} - r_{V1}| \sin \Delta \varphi$
- $|\Sigma \mathbf{p}_{t}(Ks)| < 0.1 \text{ GeV/c}$
- Refined cut for the Ks mass

 $| < M_K > - m_K | < 5 MeV/c^2$, $< M_K > = (M_{K1} + M_{K2})/2$

- ECL total energy cut

 $E_{ECL} < E_{K1} + E_{K2} - 0.3$ GeV, $E_{Ki} - Ks's$ total energy calculated from its lab. momentum

Ks Selection

Final KsKs mass-cut

S.Uehara, Belle, Phipsi13, Sept. 2013

26

Ks Ks vertex distances

Background Subtractions (1)

- Non-exclusive (KsKsX) backgrounds

Estimated from a fit of $|\Sigma \mathbf{p}_t^*|$ distributions

S.Uehara, Belle, Phipsi13, Sept. 2013

28

Background Subtractions (2) - Non-Ks Ks(4π -process) background Estimated from $< M_K >$ sideband events/ Non-exclusive and non-Ks ъ --- very small (typically ~1% level) 104 W= 10^{3} 1.2-1.4 GeV 1.4-1.6GeV 10³ 10² 2.5 .5 .3 10² ՄՆՆ W (GeV) 10 Number of events/1 MeV/c² 10 225 200 W = 1.1 - 1.2 GeV 175 $|\Sigma \mathbf{p}^*_t| = 0.0 - 0.1 \text{ GeV/c}$ 0.5 0.51 0.48 0.49 0.5 0.51 150 0.48 0.49 125 $<M_{K}>(GeV/c^{2})$ $<M_{K}>$ (GeV/c²) 100 75 10² MeV/c² 50 2.0-2.2 GeV 3.4-3.6 GeV 10³ 25 0.485 0.48 0.49 0.505 0.495 0.5 0.51 0.515 0.52 events/ 10 120 10 $|\Sigma \mathbf{p}^*_{t}| = 0.1 - 0.2 \text{ GeV/c}$ Number of 100 10 80 60 40 20 0.48 0.49 0.5 0.51 0.5 0.51 0.48 0.49

0.48

0.485

0.49

0.495

0.5

0.505

 $<M_{K}>$ (GeV/c²)

0000

 $<M_{K}>$ (GeV/c²)

 $_{M_{K}> (GeV/c^{2})}$ S.Uehara, Belle, Phipsi13, Sept. 2013 29

0.515

Systematic errors

Source	Uncertainty(%)	From correlation study
Tracking efficiency (for 4 tracks)	2	of different Exp# settings
Beam background effect	1	in data and signal MC
Pion identification (for 4 tracks)	2	
Non-exclusive and four-pion backgrounds	2 – 19 🗲	_A Half of the subtraction
Geometrical coverage and fit uncertainty	4	+ 2% from pt-fit (quad.sum)
$K^0_S K \pi$ background subtraction	1-2	Loose cut sample
K_S^0 -pair reconstruction	5-3	Loose-cut sample
Trigger efficiency	$5-7 \leftarrow C$	orrelation of the two triggers
$E_{\rm ECL}$ cut	1	offeration of the two triggers
Integrated luminosity and luminosity function	5-4	
L4 efficiency	$1 - 10 \leftarrow I$	About 10% of the inefficiency
Total	9-25, typically 10	•

31

Hat amplitudes

• We rewrite

$$\frac{d\sigma}{d\Omega} = \hat{S}^2 \left| Y_0^0 \right|^2 + \hat{D}_0^2 \left| Y_2^0 \right|^2 + \hat{G}_0^2 \left| Y_4^0 \right|^2 + \hat{D}_2^2 \left| Y_2^2 \right|^2 + \hat{G}_2^2 \left| Y_4^2 \right|^2$$

$$\left| Y_J^m \right|^2$$
are mutually independent

- ⁴ ⁷ are mutually independent
 - → obtain "hat amplitudes": $\hat{S}^2, \hat{D}_0^2, \hat{G}_0^2 \hat{D}_2^2, \hat{D}_2^2$ and \hat{G}_2^2

through fitting $d\sigma/d\Omega$

- They contain interference terms
- Yet, they convey useful information on partial waves

$W < 2 \text{ GeV} : f_0(1710) \text{ assumption}$

• Parameterization

$$S = f_0(1710)e^{i\phi_{f0}} + B_s$$

$$D_0 = B_{D0}e^{i\phi_{D0}}$$

$$D_2 = f_2(1270) + a_2(1320)e^{i\phi_{a2}} + f_2'(1525)e^{i\phi_{f2}} + B_{D2}e^{i\phi_{D2}}$$

$$B_L = \beta^{2L+1}(aW'2 + bW' + c) \text{ (bgd amplitude)}$$

$$\beta = \sqrt{1 - \frac{4m_K^2}{W^2}}, W' = W - W_{\text{th}}$$

- Fix param. of $f_2(1270)$ and $a_2(1320)$. Free $f_2'(1525)$
- Then fit $d\sigma/d\Omega$ (20 free param.)
- phases in D_2 are relative to $f_2(1270)$

Systematic uncertainties

+ σ and - σ

	Fit-H						Fit-L					
Source	Ma	ass	Г	tot	$\Gamma_{\gamma\gamma}\mathcal{B}$	(KK)	M	ass	Г	tot	$\Gamma_{\gamma\gamma}\mathcal{B}$	(KK)
	(Me	$V/c^2)$	(1	IeV)	(e	V)	(Me	$V/c^2)$	(N	feV)	(e	V)
W-range	21	0	0	-15	0	-1	16	0	5	-13	6	-4
W bias	2	-2	6	-5	2	-1	4	0	2	-7	2	-4
Efficiency	8	-4	25	-30	209	0	11	-5	0	-28	2	-12
Overall normalization	4	-2	9	-11	1	$^{-2}$	7	-2	4	-16	5	$^{-8}$
$\cos \theta^*$ bias	0	-1	3	-1	1	0	4	0	2	$^{-7}$	2	-4
B_S	5	-7	84	-9	87	$^{-2}$	7	0	26	-3	35	-2
B_{D0}	0	0	1	0	0	0	1	0	0	$^{-2}$	0	-1
B_{D2}	1	0	0	-1	0	0	11	-37	4	-11	1	$^{-2}$
$Mass(f_2(1270))$	3	-1	6	-6	1	-1	3	0	0	-4	2	-3
$\Gamma_{\rm tot}(f_2(1270))$	0	0	1	0	0	0	2	-2	5	-4	4	$^{-2}$
$\mathcal{B}(\gamma\gamma)(f_2(1270))$	7	0	12	-18	2	-4	6	-1	0	-17	5	-10
r_R	0	0	0	0	0	0	1	-1	1	0	1	0
$Mass(a_2(1320))$	1	0	0	-2	0	0	2	0	0	$^{-2}$	0	-1
$\Gamma_{\rm tot}(a_2(1320))$	2	-2	7	-5	2	-1	3	0	2	-9	3	-6
$\mathcal{B}(\gamma\gamma)(a_2(1320))$	1	-1	2	0	1	0	2	0	0	$^{-2}$	0	-1
$Mass(f'_2(1525))$	2	-2	1	0	1	0	1	-1	3	-4	3	-3
$\Gamma_{\rm tot}(f_2'(155))$	2	-2	4	-3	2	$^{-1}$	4	0	0	-4	0	$^{-2}$
$\mathcal{B}(\gamma\gamma)(f_2'(1525))$	14	0	0	-24	0	-4	14	-18	14	-27	9	-12
$\phi_{f_2'(1525)}$	4	-15	33	-12	22	-3	4	-5	0	-17	3	-11
$\phi_{a_2(1320)}$	4	-1	5	$^{-8}$	1	-2	3	0	0	-4	0	-2
Total	29	-18	96	-50	227	-8	31	-42	31	-54	38	-26

Resonances in M=1.7 – 2.4 GeV (from PDG2012)

Parameter	$f_0(1710)$	$a_2(1700)$	$f_2(1810)$					
Mass (MeV/ c^2)	1720 ± 6	1732 ± 16	1815 ± 12					
$\Gamma_{\rm tot} ({\rm MeV})$	135 ± 8	194 ± 40	197 ± 22					
$f_J/a_J \to K\bar{K}$	seen	seen	unknown					
$f_J/a_J \to \gamma\gamma$	unknown	unknown	seen					
· · ·								
Parameter	$f_0(2200)$	$f_2(2300)$	$f_{4}(2300)$					
Mass (MeV/c^2)	$\frac{1}{2189 \pm 13}$	$\frac{1}{2297 + 28}$	~ 2300					
(1107/0)	2100 I 10		2000					
$\Gamma_{\rm tot} ({\rm MeV})$	238 ± 50	149 ± 41	250 ± 80					
$f_J \to K\bar{K}$	seen	seen	seen					
$f_J \to \gamma \gamma$	unknown	seen	unknown					
$f_{J}(2220) \qquad I^{G}(J^{PC}) = 0^{+}(2^{++} \text{ or } 4^{++})$ OMITTED FROM SUMMARY TABLE Needs confirmation. See our mini-review in the 2004 edition of this <i>Review</i> , PDG 04.								
	f _J (2220)	MASS						
VALUE (MeV)E 2231.1± 3.5 OUR AVERA	UTS DOCUMEN	T ID <u>TECN</u>	COMMENT					
	f _J (2220) \	WIDTH						
<u>VALUE (MeV)</u> <u>CL%</u> EV 23 ⁺ ⁸ 7 OUR AVERAGE	/TS DOCUMEN	T ID TECN	COMMENT					
	<u> </u>	C	Uchara Rollo					

35

Fitting the region W > 2 GeV

• Parameterization

$$i - wave = B.W.e^{i\phi_i} + B_i$$

$$\boldsymbol{B}_i = \boldsymbol{b}_i \left(\frac{W}{W0}\right)^{-c_i} \boldsymbol{e}^{\boldsymbol{i}\boldsymbol{\phi}_i}$$

(assume power behavior

for non-resonant background:

 $i = S, D_0, D_2 \text{ and } G_2; \text{ (we assume } G_0=0\text{))}$

B.W.= $f_J(2200)$ and/or $f_J(2500)$ with J=0, 2 and 4

• Then fit $d\sigma/d\Omega$ (typically 16 free parameters)

Fit results for 13 assumptions

	1	2	
Assumption	No. of sol.	χ^2	ndf
f_0-f_0	2	293.3, 293.9	214
f_0 - f_2	4	$320.9,\ 321.9,\ 324.5,\ 327.6$	214
f_0 - f_4	1	291.4	214
$f_2 - f_0$	1	228.3	214
$f_2 - f_2$	1	260.4	214
f_2 - f_4	1	323.6, 306.7	214
$f_4 - f_0$	1	411.6	214
f_4 - f_2	2	468.6, 472.1	214
f_4 - f_4	4	$459.6,\ 464.1,\ 466.4,\ 467.5$	214
Only- f_0	1	390.0	218
Only- f_2	1	323.6	218
Only- f_4	1	518.7	218
No resonances	1	659.32	222

³⁷

Upper limit for $\chi_{c2}(2P) \rightarrow KsKs$

	$\chi_{c2}(2P)$ Mass $m = 3927$ Full width $\Gamma = 2$	$I^{G}(J^{PC}) = 0^{+}(2^{+}-2^{+})$ $.2 \pm 2.6 \text{ MeV}$ $.2 \pm 6 \text{ MeV}$	+)
	$\chi_{c2}(2P)$ DECAY MODES	Fraction (Γ_i/Γ)	p (MeV/c)
3.8 4	$\gamma\gamma$	seen	1964
W (GeV)	DD	seen	615
	$D^{+}D^{-}$	seen	600
	$D^0 \overline{D}{}^0$	seen	615

We use a counting method

No knowledge for $\chi_{c0}(2P)$ $\Gamma_{\gamma\gamma}(\chi_{c2}(2P))\mathcal{B}(\chi_{c2}(2P) \rightarrow K^0_S K^0_S) < 0.064 \text{ eV}$

2 events in $M \pm 2\Gamma$

90% CL UL, 1σ of syst.err. shifted

N ^{UL} = 5.32 for 90%CL without assuming interference Poisson(μ =5.32; n<=2) = 0.10 $\Gamma_{\gamma\gamma}(\chi_{c2}(2P))$ is not known, but conjectured to be around 500 eV

Upper limit for X(3915)→KsKs

PDG2013
$$X(3915) = \chi_{c0}(2P)$$

Same counting as that in $\chi_{c2}(2P)$

2 events in M \pm 2 Γ

 $N^{UL} = 5.32$ for 90%CL without assuming interference

Same method, the same events Almost same M and Γ Spin and angular distribution are different.

 $\chi_{c0}(2P$ was X(3915)

 $I^{G}(J^{PC}) = 0^{+}(0^{+})$

$\chi_{c0}(2P)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
3918.4± 1.9 OUR [3917.5 ± 2.7 MeV	AVERAGE OUR 2012 AV	(ERAGE]				
$3919.4 \pm \ 2.2 \pm \ 1.6$	59 ± 10	LEES	12AD	BABR	$e^+e^- \rightarrow e^+e^-\omega J/\psi$	
$3919.1^+ \begin{array}{c} 3.8\\ 3.4 \pm \end{array} 2.0$		DEL-AMO-SA.	. 10 B	BABR	$B \rightarrow \omega J/\psi K$	
$3915~\pm~3~\pm~2$	49 ± 15	UEHARA	10	BELL	10.6 $e^+e^- \rightarrow e^+e^- \rightarrow 1/2h$	
$3943 \hspace{0.2cm} \pm 11 \hspace{0.2cm} \pm 13$	58 ± 11	¹ CHOI	05	BELL	$B \rightarrow \omega J/\psi K$	
 We do not us 	e the followin	g data for average	s, fits,	limits,	etc. • • •	
$3914.6^+ \begin{array}{c} 3.8\\ 3.4 \\ \pm \end{array} \begin{array}{c} 2.0 \\ \end{array}$		¹ AUBERT	08W	BABR	Superseded by DEL- AMO-SANCHEZ 10B	
1 (1/2/2 threshold	enhancement	fitted as an S-wa	ve Bre	it_Wign	er resonance	

$\omega J/\psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance

$\chi_{c0}(2P)$ WIDTH

VALUE (MeV) 20± 5 OUR AV AVERAGE Scale	EVTS ERAGE Error factor = 1.4]	DOCUMENT ID	actor of 1.1.	COMMENT [27 ± 10 MeV OUR 2012
$13\pm~6\pm~3$	59 ± 10	LEES	12ADBABR	$e^+e^- \rightarrow e^+e^-\omega J/\psi$
$31^{+10}_{-8}\pm 5$		DEL-AMO-SA.	.10B BABR	$B \rightarrow \omega J/\psi K$
$17\pm10\pm$ 3	49 ± 15	UEHARA	10 BELL	10.6 $e^+e^- \rightarrow e^+e^-\omega J/\psi$
$87 \pm 22 \pm 26$	58 ± 11	² CHOI	05 BELL	$B \rightarrow \omega J/\psi K$
• • • We do no	t use the follow	ing data for aver	ages, fits, lin	nits, etc. • • •

 $\Gamma_{\gamma\gamma} (\chi_{c0}(2P)) \mathcal{B}(\chi_{c0}(2P) \to K^0_S K^0_S) < 0.49 \text{ eV}$ 90% CL UL, 1 σ of syst.err. shifted

Upper limit for $\eta_c \rightarrow KsKs$

P and CP violating process

Cross sections integrated over angle

0000

A Those for $\eta \pi^0$ and $\eta \eta$ are shown in other slides

W-dependences at high energies

Assume or expect $\sigma(W) \sim W^{-n}$

Efficiency for the Signal Process at Belle

Up-down structures in the efficiencies are due to Bhabha-veto trigger condition correlated in the $(\cos\theta_{e}, \cos\theta_{\gamma\gamma})$ plane

The trigger efficiency is defined for the acceptance after the selection

 $\pi^0\pi^0$ background MC

Background contamination in signal is estimated by the $\pi^0\pi^0$ background MC which is normalized to the observation, as 2%

44

Calibrations using Radiative-Bhabha (VC) Events

Comparisons with Previous Measurements and Fits

seen in Belle result. $\sim 2.3\sigma$ difference between Belle and BaBar in 9 – 20 GeV²

Fit A (suggested by BaBar) $Q^{2}|F(Q^{2})| = A (Q^{2}/10GeV^{2})^{\beta}$ BaBar: $A = 0.182 \pm 0.002 (\pm 0.004) \text{ GeV}$ $\beta = 0.25 \pm 0.02$ Belle: $A = 0.169 \pm 0.006 \text{ GeV}$ β = 0.18 ± 0.05 χ^2 /ndf = 6.90/13 ~1.5 σ difference from BaBar

Fit B (with an asymptotic parameter) $Q^{2}|F(Q^{2})| = BQ^{2}/(Q^{2}+C)$ Belle: $B = 0.209 \pm 0.016 \text{ GeV}$ $C = 2.2 \pm 0.8 \text{ GeV}^2$ χ^2 /ndf = 7.07/13 B is consistent with the QCD value (0.185GeV)