Gamma gamma physics at Belle

Sadaharu Uehara (KEK)

PHIPSI13

September 9-12, 2013
PH1 $72 \begin{gathered}\text { September 9-12, } 2013 \\ \text { Sapienza University of Rome }\end{gathered}$

KEKB Accelerator and Belle Detector

- Asymmetric $\mathrm{e}^{-} \mathrm{e}^{+}$collider $8 \mathrm{GeV} \mathrm{e}^{-}$(HER) x $3.5 \mathrm{GeV} \mathrm{e}^{+}$(LER)

$$
V_{S}=10.58 \mathrm{GeV} \Leftrightarrow \Upsilon(4 \mathrm{~S})
$$

Beam crossing angle: 22mrad
-Continuous injection
-Luminosity
$L_{\text {max }}=2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
\int Ldt ~ $1040 \mathrm{fb}^{-1}$

Two-Photon Collisions and Hadron/QCD Physics

Hadron production from collisions of virtual or quasi-real photons

- Perturbative/Non-perturbative QCD
- Resonances
- Hadron/photon form factors

Single resonance formation in $\gamma \gamma^{(*)}$ collisions
Zero-tag with p_{t}-balance requirement for the hadron system
$\mathbf{Q}^{2} \ll \mathbf{W}^{2}$ ($\gamma \gamma \mathrm{c} . \mathrm{m}$. energy), $\mathbf{Q}^{2} \ll E_{\mathrm{QCD}}{ }^{2}$ (Energy scale of $\mathbf{Q C D}$)
Measurement of $\Gamma \gamma \gamma B(\rightarrow$ final state $)$
Single-tag process (Q^{2} dependence in $\gamma \gamma^{*}$ collisions)
Measurement of transition form factor

$\gamma \gamma \rightarrow K^{0}{ }_{s} K_{s}{ }_{s}$

The first measurement of the differential cross section in
$W=1.05-2.4 \mathrm{GeV} \quad$ with $972 \mathrm{fb}^{-1}$ Belle data
W: c.m. energy of $\gamma \gamma$ collisions
arXiv:1307.7457[hep-ex], submitted to PTEP
(Progress of Theoretical and Experimental Physics)

Study of resonances including
exotic candidates (egg. glueball state)
This process is dominated by resonances in $\mathrm{W}<\sim 2.4 \mathrm{GeV}$

W > 2.4 GeV -- Update of the previous Belle publication (W.T.Chen et al., PLB651, 15 (2007), 397.6fb-1)

QCD study - Angular and W dependence
Charmonia: Partial decay widths for $\chi_{c 0}$ and $\chi_{c 2}$
Search for $\chi_{\text {co }}(2 P)$ etc., which is to be $3.80-3.93 \mathrm{GeV}$
\qquad

Cross section integrated over the angle

Five resonance-like peaks visible below 3 GeV

Formula for differential cross section

- At low energy ($W<3 \mathrm{GeV}$)

$$
\frac{d \sigma}{d \Omega}=\left|S Y_{0}^{0}+D_{0} Y_{2}^{0}+G_{0} Y_{4}^{0}\right|^{2}+\left|D_{2} Y_{2}^{2}+G_{2} Y_{4}^{2}\right|^{2}
$$

- $S, D_{0}, G_{0}, D_{2}, G_{2}$ Partial wave amplitudes
$J=L=0,2,4$ (even only) and total two-photon helicity $=0$ or 2
- give W dependence of each partial wave assuming resonance and continuum components
- Y_{J}^{m} : spherical harmonics
- Each determines the angular dependence of the wave
- But, not mutually independent

Fit with S and D waves for $\mathrm{W}<2.0 \mathrm{GeV}$

Hat amplitudes

to visualize, model independent

$$
\frac{d \sigma}{d \Omega}=\hat{\boldsymbol{S}}^{2}\left|Y_{0}^{0}\right|^{2}+\hat{D}_{0}{ }^{2}\left|Y_{2}^{0}\right|^{2}+\hat{D}_{2}{ }^{2}\left|Y_{2}^{2}\right|^{2}
$$

Fit results for $W<2.0 \mathrm{GeV}$

$f_{2}(1270)-a_{2}(1320)$ interference and $f_{2}{ }^{\prime}(1525)$

Parameter	Sol. H	Sol. L	H,L combined	Incoh. fit	PDG [23]
$\chi^{2} / n d f$	375.09/387	375.22/387	-	406.6/388	-
$\phi_{a_{2}(1320)}$ (deg.)	$178.1_{-1.3-12.5}^{+1.7+6.7}$	$172.6_{-1.0-3.1}^{+1.3+6.7}$	$172.6_{-0.7}^{+6.0+7.0}$	$173.6_{-1.4}^{+1.3}$	-
$\operatorname{Mass}\left(f_{2}^{\prime}(1525)\right)\left(\mathrm{MeV} / c^{2}\right)$	$1526.1_{-1.0-2.8}^{1+0.12+9}$	$1524.3_{-0.9-1.1}^{+1.0+1.6}$	$1525.3_{-1.4-2.1}^{+1.7+3.7}$	1530.7 ± 0.4	1525 ± 5
$\Gamma_{\text {tot }}\left(f_{2}^{\prime}(1525)\right)(\mathrm{MeV})$	$83.4{ }_{-1.7-3.4}^{+1.9+2.0}$	$81.8_{-2.0-0.9}^{+2.3+4.4}$	$82.9{ }_{-2.2-2.0}^{+-1.1+3.3}$	82.7 ± 1.4	73_{-5}^{+6}
$\Gamma_{\gamma \gamma} \mathcal{B}(K \bar{K})\left(f_{2}^{\prime}(1525)\right)(\mathrm{eV})$	113_{-28-77}^{+25+43}	$48 \pm 4_{-10}^{+33}$	48_{-8}^{+67+12}	79.1 ± 1.4	72 ± 7

Two solutions are found, and they are combined

- Destructive interference btw. f_{2} (1270) and a_{2} (1320) confirmed
- First attempt to include interference effect in measuring $\Gamma_{r \gamma} B(K \bar{K})$ of $f_{2}^{\prime}{ }^{\prime}(1525)$.

Fit results for W < 2.0 GeV (cont.)

$f_{J}(1710)$

Parameter	$f_{0}(1710)$ fit				$f_{2}(1710)$ fit	
	fit-H	fit-L	H,L combined	PDG	fit-H	fit-L
$\chi^{2} / n d f$	694.2/585	701.6/585	-	-	796.3/585	831.5/585
$\operatorname{Mass}\left(f_{J}\right)\left(\mathrm{MeV} / c^{2}\right)$	$1750{ }_{-6-18}^{+5+29}$	1749_{-6-42}^{+5+31}	$1750{ }_{-7-18}^{+6+29}$	1720 ± 6	$1750{ }_{-7}^{+6}$	1729_{-7}^{+6}
$\Gamma_{\text {tot }}\left(f_{J}\right)(\mathrm{MeV})$	138_{-11-50}^{+12+96}	145_{-10-54}^{+11+31}	$139{ }_{-12}^{+11+50}$	135 ± 6	$132{ }_{-11}^{+12}$	150 ± 10
$\Gamma_{\gamma \gamma} \mathcal{B}(K \bar{K})_{f_{J}}(\mathrm{eV})$	12_{-2-8}^{+3+227}	21_{-4-26}^{+6+38}	12_{-2-8}^{+3+227}	unknown	$2.1{ }_{-0.3}^{+0.5}$	1.6 ± 0.2

Scalar rather than tensor! (in contrast to L3)
$f_{0}(1710): \Gamma_{m}>0(10 \mathrm{eV})$ indicates not likely a pure glueball

Fit Results for resonances in $\mathrm{W}>2.0 \mathrm{GeV}$

$f_{2}(\mathbf{2 2 0 0})-f_{0}(\mathbf{2 5 0 0})$ is the best solution (in all trials of $\mathrm{J}=0,2,4$)

- The resonance parameters

Parameter	$f_{2}(2200)$	$f_{0}(2500)$
Mass $\left(\mathrm{MeV} / c^{2}\right)$	2243_{-6-29}^{+7+3}	$2539 \pm 14_{-14}^{+38}$
$\Gamma_{\text {tot }}(\mathrm{MeV})$	$145 \pm 12_{-34}^{+27}$	$274_{-61+163}^{+7+126}$
$\Gamma_{\gamma \gamma} \mathcal{B}(K \bar{K})(\mathrm{eV})$	$3.2_{-0.4-2.2}^{+0.5+1.3}$	40_{-7-40}^{+9+17}

- Significances
- 3.4σ for $f_{2}(2200)$ over $f_{0}(2200)$
-4.3σ for $f_{0}(2500)$ over $f_{2}(2500)$ evaluated from min. $\left(\Delta x^{2}\right)$ for every sys. source

Fit

\square

Charmonia $\chi_{c 0}$ and $\chi_{c 2}$

QCD Studies: Angular dependence

Assume non-resonant effect in $2.6<\mathbf{W}<3.3 \mathrm{GeV}$; we know there is a resonance near 2.5 GeV $\mathrm{d} \sigma / \mathrm{d}\left|\cos \theta^{*}\right| \propto 1 / \sin ^{\alpha} \theta^{*}$

Handbag: $\alpha=$ const. $=4$
M.Diehl, P.Kroll, and C. Vogt, PLB 532, 99 (2002) M.Diehl, P.Kroll, PLB 683, 165 (2010)
pQCD: α not const, depend on W

No tendency is seen to converge to 4 at high energies \qquad

W-dependence

$\sigma \propto W^{-n}$ pQCD predictions
for charged-meson pair $n=6\left(\pi^{+} \pi^{-}, K^{+} K^{-}\right.$etc.) $=$Dimensional counting rule for neutral-meson pair $n=10$ ($K^{0} S^{\circ}{ }^{0}$ s etc.) by Chernyak PLB 640, 246 (2006)

W range (GeV)	$\left\|\cos \theta^{*}\right\|$ range	n
$2.6-4.0($ except $3.3-3.6)$	<0.8	$11.0 \pm 0.4 \pm 0.4$
$2.6-3.3$	<0.8	$10.0 \pm 0.5 \pm 0.4$
$2.6-3.3$	<0.6	$11.8 \pm 0.6 \pm 0.4$
$2.4-4.0($ except $3.3-3.6)$	<0.6	$10.5 \pm 0.6 \pm 0.5$ Belle 2007

Close to $\mathrm{n}=10$, agree with pQCD prediction
\qquad

" $\gamma \gamma \rightarrow$ meson pair" (six final states) from Belle

QCD Test in 2.4-4.1 GeV energy region

				Physics covered		
Process	Reference $\sum_{\text {BELLE }}$	Int.Lum. (fb^{-1})	$\gamma \gamma \mathrm{c} . \mathrm{m}$. Energy (GeV)	Light Mesons	QCD	Charmonia
$\pi^{+} \pi^{-}$	-PLB 615, 39 (2005) PRD 75, 051101(R) (2007) J. Phys. Soc. Jpn. 76, 074102 (2007)	$\begin{aligned} & 87.7 \\ & 85.9 \\ & 85.9 \end{aligned}$	$\begin{aligned} & 2.4-4.1 \\ & 0.8-1.5 \\ & 0.8-1.5 \end{aligned}$	$\begin{aligned} & \sqrt{ } \\ & \sqrt{2} \end{aligned}$		\checkmark
$\mathrm{K}^{+} \mathrm{K}^{-}$	EPJC 32, 323 (2003) PLB 615, 39 (2005)	$\begin{aligned} & 67 \\ & 87.7 \end{aligned}$	$\begin{aligned} & 1.4-2.4 \\ & 2.4-4.1 \end{aligned}$	\checkmark	\checkmark	\checkmark
$\pi^{0} \pi^{0}$	PRD 78, 052004 (2008) OPRD 79, 052009 (2009)	$\begin{gathered} 95 \\ 223 \end{gathered}$	$\begin{aligned} & 0.6-4.0 \\ & 0.6-4.0 \end{aligned}$	$\begin{aligned} & \sqrt{ } \\ & \sqrt{2} \end{aligned}$	\checkmark	\checkmark
$\mathrm{K}^{0}{ }_{\mathrm{S}} \mathrm{~K}^{0}{ }_{\mathrm{S}}$	PLB 651, 15 (2007) arXiv:1307.7457[hep-ex] NEW	$\begin{gathered} 397.1 \\ 972 \end{gathered}$	$\begin{gathered} 2.4-4.0 \\ 1.05-4.0 \end{gathered}$	\checkmark	$\sqrt{ }$	$\sqrt{ }$
$\eta \pi^{0}$	-PRD 80, 032001 (2009)	223	0.84-4.0	$\sqrt{ }$	$\sqrt{ }$	
$\eta \eta$	-PRD 82, 114031 (2010)	393	1.1-4.0	\checkmark	\checkmark	\checkmark

Differential cross section $\mathbf{d \sigma} / \mathrm{d}\left|\cos \theta^{*}\right|$ for these reaction processes are measured.

Three kinds of QCD Studies for 2.4-4.1 GeV Region

Angular dependence

$d \sigma / d\left|\cos \theta^{*}\right|=a\left(\sin ^{-4} \theta^{*}+b \cos ^{2} \theta^{*}\right)$.

Energy dependence

Difference of the slopes

$$
\sigma \sim W-n
$$

Cross-section ratio

$$
\sigma\left(\eta \pi^{0}\right) / \sigma\left(\pi^{0} \pi^{0}\right)
$$

Summary of the six channels

π^{0} Transition Form Factor

Single-tag π^{0} production in two-photon process with a large- Q^{2} and a small- Q^{2} photon

Theoretically calculated from pion distribution amplitude and decay constant

$$
F\left(Q^{2}\right)=\frac{\sqrt{2} f_{\pi}}{3} \int T_{H}\left(x, Q^{2}, \mu\right) \phi_{\pi}(x, \mu) d x
$$

Measurement:

$$
\begin{aligned}
\left|F\left(Q^{2}\right)\right|^{2}= & \left|F\left(Q^{2}, 0\right)\right|^{2}=\left(d \sigma / d Q^{2}\right) /\left(2 A\left(Q^{2}\right)\right) \quad A\left(Q^{2}\right) \text { is calculated by QED } \\
& |F(0,0)|^{2}=64 \pi \Gamma_{\gamma \gamma} /\left\{(4 \pi \alpha)^{2} m_{R}^{3}\right\}
\end{aligned}
$$

Detects e (tag side) and π^{0}
$Q^{2}=2 E E^{\prime}(1-\cos \theta) \quad$ from energy and polar angle of the tagged electron

BaBar's Measurement

π^{0} transition form factor (TFF) measured by BaBar is
larger than the asymptotic pQCD prediction above $\mathrm{Q}^{2}>10 \mathrm{GeV}^{2}$

Belle measurement: Extraction of π^{0} Yield

Electron-tag

Int. Luminosity :759 fb-1 (Larger than BaBar's)

PRD 86, 092007 (2012)
Fit $\mathrm{M}_{\gamma \gamma}$ distribution by Double Gaussian (for signal)
$+2^{\text {nd }}-O^{\text {rder }}$ Polynomial (for background) in each Q^{2} bin

Belle result

The cross sections from p-tag and e-tag

 are evaluated, separately, and then combined.
$\mathrm{Q}^{2}{ }_{\text {max }}=1.0 \mathrm{GeV}^{2}$ for the less-virtual photon Corrected for $\sqrt{ } \mathrm{s}=10.58 \mathrm{GeV}$
π^{0} Transition Form Factor

No rapid growth above $\mathrm{Q}^{2}>9 \mathrm{GeV}^{2}$ is seen in Belle result.
~ 2.3σ difference between Belle and BaBar in $9-20 \mathrm{GeV}^{2}$
Fit with an asymptotic parameter

$$
\begin{aligned}
\mathrm{Q}^{2}\left|\mathrm{~F}\left(\mathrm{Q}^{2}\right)\right|= & \mathrm{BQ}^{2} /\left(\mathrm{Q}^{2}+\mathrm{C}\right) \quad \mathrm{B}=0.209 \pm 0.016 \mathrm{GeV} \\
& \text { Consistent with the } \mathrm{QCD} \text { value }(0.185 \mathrm{GeV})
\end{aligned}
$$

\qquad

Summary

- $f_{2}(1270)$ and $a_{2}(1320)$ interfere indeed destructively
- $f_{0}(1710)$ is favored over $f_{2}(1710), \quad \Gamma \gamma \gamma>O(10 \mathrm{eV}) \quad$ Not likely a pure glueball - $f_{2}(2200)$ and $f_{0}(2500)$ favored
- QCD test using measurements of six processes of $\gamma \gamma \rightarrow$ meson pair

$$
\left(\pi^{+} \pi^{-}, K^{+} K^{-}, \pi^{0} \pi^{0}, K_{S}^{0} K_{S}^{0}, \eta \pi^{0}, \eta \eta, \text { for } W=2.4-4.1 \mathrm{GeV}\right)
$$

- W-dependence of $K_{S}^{0} K_{S}^{0}, \mathrm{n} \sim 10$ predicted by pQCD, is confirmed

$$
\pi^{+} \pi^{-}, K^{+} \mathrm{K}^{-}(\mathrm{n}=6 \text { predicted, } \mathrm{n}=7-8 \text { measured) }
$$

- Systematic QCD studies using W and angular dependences and cross section ratio of these exclusive processes are now possible
- Measurement of $\gamma \gamma^{*} \rightarrow \pi^{0}$ transition form factor
- Steep increase in $\mathrm{Q}^{2}>{ }^{\sim} 9 \mathrm{GeV}^{2}$ observed by BaBar is not seen by Belle
- Belle result is consistent with the QCD asymptotic value

backup

\qquad

Nature of $\gamma \gamma \rightarrow R \rightarrow K_{S}^{0} K_{S}^{0}$

- $R=\overline{f_{j} \text { or } a_{j}(J=\text { even })}$
- Destructive interference between f_{J} and a_{J}

$$
\left(\left|\phi_{a 2}-\phi_{f 2}\right|=180^{\circ}\right)
$$

- (D. Faiman, H.J. Lipkin and H.R. Rubinstein, PL 59B,269 (1975)) based on OZI (Okubo-Zweig-Iizuka) rule and isospin

$$
|d \bar{d}\rangle=\frac{1}{\sqrt{2}}\left(f_{J}-a_{J}\right)
$$

Selection Criteria

4 Pions from 2 Ks's

- L4 (filtering) brings non-negligible inefficiency (At least 1 track with pt $>0.3 \mathrm{GeV}$, $\mathrm{dr}<1 \mathrm{~cm}$ and $|\mathrm{dz}|<4 \mathrm{~cm}$)
- Trigger restricted in bit\#3(ff_t2oc, Trigger A)

$$
\begin{aligned}
& \text { \#27(loe_fs_o, Trigger B) } \\
& \text { \#24(hadron_a=loe_sss_tc, Trigger C) }
\end{aligned}
$$

- LowMult - 4track (previous page)
- 4 charged pions $(\mathrm{L}(\mathrm{K}) /(\mathrm{L}(\mathrm{K})+\mathrm{L}(\pi))<0.8)$ with $\left|\Sigma \mathbf{p}_{\mathrm{t}}\right|<0.2 \mathrm{GeV} / \mathrm{c}$
- No neutral pion candidate with $p_{t}>0.1 \mathrm{GeV} / \mathrm{c}$
- Just two Ks candidates with
z-matching @vertex $|\Delta z|<p_{k}[\mathrm{~cm} / \mathrm{GeV} / \mathrm{c}]+1.6 \mathrm{~cm}$
$\pi \pi$ invariant mass@vertex $\left|\mathrm{M}_{\pi \pi}-\mathrm{m}_{\mathrm{K}}\right|<20 \mathrm{MeV} / \mathrm{c}^{2}$
- Two $\mathrm{M}_{\pi \pi}$ mass conditions: $\left|\mathrm{M}_{\mathrm{K} 1}-\mathrm{M}_{\mathrm{K} 2}\right|<10 \mathrm{MeV} / \mathrm{c}^{2}$
- Vertices off IP (only for $W>2 G e V$) :

$$
r_{\mathrm{vi}}>(\mathrm{W}-2 \mathrm{GeV}) \times 0.1 \mathrm{~cm} / \mathrm{GeV}
$$

Selection Criteria (continued)

The 2 Ks-vertex distances and tr.-momentum relations etc.

- Distance between the vertices in the $\mathrm{r} \varphi, \mathrm{dVr}>+0.5 \mathrm{~cm}$ (dVr has a sign according to the relative momentum of the 2 Ks 's)
- 3D distance $\mathrm{dV}>0.7 \mathrm{~cm} \quad$ OR 2D distance $\mathrm{dVr}>+0.3 \mathrm{~cm}$
- Proiected vertex distance on the relative momentum $\delta \mathrm{v}<0.7 \mathrm{~cm}$ $\delta_{V}=\left|\left(r_{V 2}-r_{V 1}\right) \times\left(p_{t 2}-p_{t 1}\right)\right| /\left|p_{t 2}-p_{t 1}\right|=\left|r_{V 2}-r_{V 1}\right| \sin \Delta \varphi$
- $\left|\Sigma \boldsymbol{p}_{\mathrm{t}}(\mathrm{Ks})\right|<0.1 \mathrm{GeV} / \mathrm{c}$
- Refined cut for the Ks mass

$$
\left|<M_{\mathrm{K}}>-\mathrm{m}_{\mathrm{K}}\right|<5 \mathrm{MeV} / \mathrm{c}^{2}, \quad<\mathrm{M}_{\mathrm{K}}>=\left(\mathrm{M}_{\mathrm{K} 1}+\mathrm{M}_{\mathrm{K} 2}\right) / 2
$$

- ECL total energy cut

$$
\mathrm{E}_{\mathrm{ECL}}<\mathrm{E}_{\mathrm{K} 1}+\mathrm{E}_{\mathrm{K} 2}-0.3 \mathrm{GeV}, \quad \mathrm{E}_{\mathrm{Ki}}-\mathrm{Ks} \text { 's total energy calculated from }
$$ its lab. momentum

Ks Selection

Final KsKs mass-cut
z-matching @ vertex

Solid : W $<2.5 \mathrm{GeV}$ Dashed: W>2.5 GeV

Cut lines for

$$
\begin{aligned}
& {[\mathrm{M}(\mathrm{Ks} 1)+\mathrm{M}(\mathrm{Ks} 2)] / 2} \\
& \quad \text { and } \\
& |\mathrm{M}(\mathrm{Ks} 1)-\mathrm{M}(\mathrm{Ks} 2)|
\end{aligned}
$$

\qquad

Ks Ks vertex distances

2D vertex distance

Sharp peaks near 0cm seen only in Exp.are from Direct $4 \pi\left(\pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$production backgrounds.

3D vertex distance

Tr. mometum diff. and vertex position diff. must be in parallel

(a) Exp. 972

Background Subtractions (1)

- Non-exclusive (KsKsX) backgrounds

Estimated from a fit of $\left|\Sigma \mathbf{p}_{\mathrm{t}}^{*}\right|$ distributions

Background Subtractions (2)

- Non-Ks Ks(4 π-process) background $d_{\frac{2}{2} 0}$ Estimated from $<\mathrm{M}_{\mathrm{K}}>$ sideband Non-exclusive and non-Ks --- very small (typically $\sim 1 \%$ level) ${ }_{\text {总 }}^{10}$ (

cel \qquad

S.Uehara, Belle, Phipsi13, Sept. 201329

Cross section integrated over the angle

$\int \frac{d \sigma}{d\left|\cos \theta^{*}\right|} d\left|\cos \theta^{*}\right|$

Black --- $\left|\cos \theta^{*}\right|<0.8$
Blue --- $\left|\cos \theta^{*}\right|<0.6$

Orange --- $\left|\cos \theta^{*}\right|<0.6$ (previous, Belle 2007)
\qquad

Systematic errors

Hat amplitudes

- We rewrite
$\frac{d \sigma}{d \Omega}=\hat{S}^{2}\left|Y_{0}^{0}\right|^{2}+\hat{D}_{0}^{2}\left|Y_{2}^{0}\right|^{2}+\hat{G}_{0}{ }^{2}\left|Y_{4}^{0}\right|^{2}+\hat{D}_{2}^{2}\left|Y_{2}^{2}\right|^{2}+\hat{G}_{2}^{2}\left|Y_{4}^{2}\right|^{2}$
- $\left|Y_{J}^{m}\right|^{2}$ are mutually independent
\rightarrow obtain "hat amplitudes":

$$
\hat{S}^{2}, \hat{D}_{0}^{2}, \hat{G}_{0}^{2} \hat{D}_{2}^{2}, \hat{D}_{2}^{2} \text { and } \hat{G}_{2}^{2}
$$

through fitting $d \sigma / d \Omega$

- They contain interference terms
- Yet, they convey useful information on partial waves
\qquad

W < 2 GeV : $f_{0}(1710)$ assumption

- Parameterization

$$
\begin{aligned}
& S=f_{0}(1710) e^{i \phi_{f 0}}+B_{S} \\
& D_{0}=B_{D 0} e^{i \phi_{D 0}} \\
& D_{2}=f_{2}(1270)+a_{2}(1320) e^{i \phi_{a_{2}}}+f_{2}^{\prime}(1525) e^{i \phi_{f^{\prime}}} \\
& \quad+B_{D 2} e^{i \phi_{D 2}} \\
& B_{L}=\beta^{2 L+1}\left(a W^{\prime} 2+b W^{\prime}+c\right)(\text { bgd amplitude }) \\
& \quad \beta=\sqrt{1-\frac{4 m_{K}^{2}}{W^{2}}}, W^{\prime}=W-W_{\mathrm{th}}
\end{aligned}
$$

- Fix param. of $f_{2}(1270)$ and $a_{2}(1320)$. Free $f_{2}{ }^{\prime}(1525)$
- Then fit $d \sigma / d \Omega$ (20 free param.)
- phases in D_{2} are relative to $f_{2}(1270)$
\qquad

Systematic uncertainties

$+\sigma \overline{\text { and }-\sigma}$

Source	Fit-H			Fit-L		
	$\begin{gathered} \text { Mass } \\ \left(\mathrm{MeV} / c^{2}\right) \end{gathered}$	$\begin{gathered} \hline \Gamma_{\text {tot }} \\ (\mathrm{MeV}) \end{gathered}$	$\begin{gathered} \Gamma_{\gamma \gamma} \mathcal{B}(K K) \\ (\mathrm{eV}) \end{gathered}$	$\begin{gathered} \text { Mass } \\ \left(\mathrm{MeV} / c^{2}\right) \end{gathered}$	$\begin{aligned} & \hline \Gamma_{\text {tot }} \\ & (\mathrm{MeV}) \\ & \hline \end{aligned}$	$\begin{gathered} \Gamma_{\gamma \gamma} \mathcal{B}(K K) \\ (\mathrm{eV}) \end{gathered}$
W-range	210	$0 \quad-15$	$0 \quad-1$	160	$5-13$	$6 \quad-4$
W bias	$2-2$	$6 \quad-5$	$2-1$	40	$2-7$	$2 \quad-4$
Efficiency	$8 \quad-4$	$25 \quad-30$	2090	$11-5$	$0 \quad-28$	$2-12$
Overall normalization	$4 \quad-2$	$9 \quad-11$	$1-2$	$7 \quad-2$	$4-16$	$5 \quad-8$
$\cos \theta^{*}$ bias	$0 \quad-1$	$3-1$	10	40	$2 \quad-7$	$2 \quad-4$
B_{S}	$5 \quad-7$	$84-9$	$87-2$	70	$26-3$	$35-2$
$B_{D 0}$	00	10	00	10	$0 \quad-2$	$0 \quad-1$
$B_{D 2}$	10	$0 \quad-1$	$0 \quad 0$	$\begin{array}{rr}11 & -37\end{array}$	$4 \quad-11$	$1-2$
$\operatorname{Mass}\left(f_{2}(1270)\right)$	$3-1$	$6 \quad-6$	$1-1$	30	$0 \quad-4$	$2 \quad-3$
$\Gamma_{\text {tot }}\left(f_{2}(1270)\right)$	00	10	$0 \quad 0$	$2-2$	$5 \quad-4$	$4 \quad-2$
$\mathcal{B}(\gamma \gamma)\left(f_{2}(1270)\right)$	70	$12-18$	$2-4$	$6-1$	$0 \quad-17$	$5 \quad-10$
r_{R}	00	$0 \quad 0$	$0 \quad 0$	$1-1$	10	10
$\operatorname{Mass}\left(a_{2}(1320)\right)$	10	$0 \quad-2$	$0 \quad 0$	20	$0 \quad-2$	$0-1$
$\Gamma_{\text {tot }}\left(a_{2}(1320)\right)$	$2-2$	$7 \quad-5$	$2-1$	30	$2-9$	$3-6$
$\mathcal{B}(\gamma \gamma)\left(a_{2}(1320)\right)$	$1 \quad-1$	20	10	20	$0 \quad-2$	$0-1$
$\operatorname{Mass}\left(f_{2}^{\prime}(1525)\right)$	$2-2$	10	10	$1-1$	$3-4$	$3-3$
$\Gamma_{\text {tot }}\left(f_{2}^{\prime}(155)\right)$	$2-2$	$4 \quad-3$	$2-1$	40	$0 \quad-4$	$0-2$
$\mathcal{B}(\gamma \gamma)\left(f_{2}^{\prime}(1525)\right)$	$14 \quad 0$	$0 \quad-24$	$0 \quad-4$	$14-18$	$14 \quad-27$	$9 \quad-12$
$\phi_{f_{2}^{\prime}(1525)}$	$4 \begin{array}{ll}4 & -15\end{array}$	$33-12$	$22-3$	$4-5$	$0 \quad-17$	$3-11$
$\phi_{a_{2}(1320)}$	$4 \quad-1$	$5-8$	$1-2$	310	$0 \quad-4$	$0-2$
Total	$\begin{array}{ll}29 & -18\end{array}$	96 -50	$227-8$	$31-42$	$31-54$	38-26

Resonances in $\mathrm{M}=1.7$ - 2.4 GeV (from PDG2012)

Parameter	$f_{0}(1710)$	$a_{2}(1700)$	$f_{2}(1810)$
Mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	1720 ± 6	1732 ± 16	1815 ± 12
$\Gamma_{\text {tot }}(\mathrm{MeV})$	135 ± 8	194 ± 40	197 ± 22
$f_{J} / a_{J} \rightarrow K \bar{K}$	seen	seen	unknown
$f_{J} / a_{J} \rightarrow \gamma \gamma$	unknown	unknown	seen
Parameter	$f_{0}(2200)$	$f_{2}(2300)$	$f_{4}(2300)$
Mass ($\mathrm{MeV} / \mathrm{c}^{2}$)	2189 ± 13	32297 ± 28	~ 2300
$\Gamma_{\text {tot }}(\mathrm{MeV})$	238 ± 50	149 ± 41	250 ± 80
$f_{J} \rightarrow K \bar{K}$	seen	seen	seen
$f_{J} \rightarrow \gamma \gamma$	unknown	seen	unknown
$f_{J}(2220)$		${ }_{1}\left({ }_{(}{ }^{\text {PC }}\right)=$	+ or 4^{++}
OMITTED FROM SU Needs confirmation Review, PDG 04	MMARY TABL ion. See our mini		ion of
	$f_{(}(2220)$	MASS	
	TT5 oocu	- tew	comest
	$f_{\text {f(220) }}$	WIDTH	
VALUE (MeV) CL\% EVTS ${ }^{23}+{ }^{+}{ }^{8}$ OUR AVERAGE	As Docul	VT 10 TENN	foment

Fitting the region $\mathrm{W}>2 \mathrm{GeV}$

- Parameterization

$$
\begin{gathered}
i-\text { wave }=B . W . e^{i \phi_{i}}+B_{i} \\
B_{i}=b_{i}\left(\frac{W}{W 0}\right)^{-c_{i}} e^{i \phi_{i}}
\end{gathered}
$$

(assume power behavior
for non-resonant background:

$$
\left.i=\mathrm{S}, \mathrm{D}_{0}, \mathrm{D}_{2} \text { and } \mathrm{G}_{2} ;\left(\text { we assume } \mathrm{G}_{0}=0\right)\right)
$$

B.W. $=f_{J}(2200)$ and/or $f_{J}(2500)$ with $J=0,2$ and 4

- Then fit $d \sigma / d \Omega$ (typically 16 free parameters)
\qquad

Fit results for 13 assumptions

Assumption	No. of sol.	χ^{2}	$n d f$
$f_{0}-f_{0}$	2	$293.3,293.9$	214
$f_{0}-f_{2}$	4	$320.9,321.9,324.5,327.6$	214
$f_{0}-f_{4}$	1	291.4	214
$f_{2}-f_{0}$	1	228.3	214
$f_{2}-f_{2}$	1	260.4	214
$f_{2}-f_{4}$	1	$323.6,306.7$	214
$f_{4}-f_{0}$	1	411.6	214
$f_{4}-f_{2}$	2	$468.6,472.1$	214
$f_{4}-f_{4}$	4	$459.6,464.1,466.4,467.5214$	
Only- f_{0}	1	390.0	218
Only- f_{2}	1	323.6	218
Only- f_{4}	1	518.7	218
No resonances	1	659.32	222

Upper limit for $\chi_{c 2}(2 P) \rightarrow K s K s$

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(2^{++}\right)
$$

Mass $m=3927.2 \pm 2.6 \mathrm{MeV}$
Full width $\Gamma=24 \pm 6 \mathrm{MeV}$

$\chi_{\epsilon 2}(2 P)$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / c)$
$\gamma \gamma$	seen	1964
$\bar{D} \bar{D}$	seen	615
$D^{+} D^{-}$	seen	600
$D^{0} \bar{D}^{0}$	seen	615

We use a counting method
No knowledge for $\chi_{c 0}(2 \mathrm{P}) \Gamma_{r v}\left(\chi_{c 2}(2 P)\right) \mathcal{B}\left(\chi_{c 2}(2 P) \rightarrow K_{S}^{0} K_{S}^{0}\right)<0.064 \mathrm{eV}$
2 events in $\mathrm{M} \pm 2 \Gamma \quad 90 \%$ CL UL, 1σ of syst.err. shifted
N UL $=5.32$ for $90 \% \mathrm{CL} \quad \Gamma_{r 1}\left(\chi_{c 2}(2 P)\right)$ is not known, but conjectured without assuming interference
$\operatorname{Poisson}(\mu=5.32 ; n<=2)=0.10$

Upper limit for X(3915) \rightarrow KsKs

PDG2013 $\mathrm{X}(3915)=\chi_{\mathrm{c} 0}(2 \mathrm{P})$

$\chi_{c 0}(2 P)$ was $X(3915)$$\quad \quad I^{G}(J P C)=0^{+}\left(0^{++}\right)$

Same counting as that in $\chi_{\mathrm{c} 2}(2 \mathrm{P})$
2 events in $\mathrm{M} \pm 2 \Gamma$
$\mathrm{N}^{\mathrm{UL}}=5.32$ for $90 \% \mathrm{CL}$
without assuming interference
Same method, the same events Almost same M and Γ

 Spin and angular distribution are different.

$$
\Gamma_{r v}\left(\chi_{c 0}(2 P)\right) \mathcal{B}\left(\chi_{c 0}(2 P) \rightarrow K_{S}^{0} K_{S}^{0}\right)<0.49 \mathrm{eV} 90 \% \text { CL UL, } 1 \sigma \text { of syst.err. shifted }
$$

Upper limit for $\eta_{c} \rightarrow$ KsKs

P and $C P$ violating process

(PDG2012 BF < 4.2×10-4)
Fit function
$Y(W)=\left|\sqrt{\alpha k W^{-\beta}}+e^{i \phi} \sqrt{N} \mathrm{BW}(W)\right|^{2}$
Fluctuation?
$\mathrm{N}^{\mathrm{UL}}=15$ ($=85$) for $90 \% \mathrm{CL}$ without (with) interference

$$
\mathrm{k}=0(0<\mathrm{k} \leq 1)
$$

k cannot be determined by the fit

Interference	$\Gamma_{\gamma \gamma} \mathcal{B}\left(\eta_{c}\right)$	$\mathcal{B}\left(\eta_{c} \rightarrow K_{S}^{0} K_{S}^{0}\right)$	
Without	$<0.29 \mathrm{eV}$	$<5.6 \times 10^{-5}$	$90 \% \mathrm{CL}$
With	$<1.6 \mathrm{eV}$	$<3.2 \times 10^{-4}$	$90 \% \mathrm{CL}$

90% CL: UL $\Delta(2 \operatorname{lnL})=(1.64)^{2}$
floating the other parameters
1σ of syst.err. shifted
\rightarrow World severest upper limits

Cross sections integrated over angle

a Those for $\eta \pi^{0}$ and $\eta \eta$ are shown in other slides
\square

W-dependences at high energies

Assume or expect $\sigma(\mathbf{W}) \sim \mathbf{W}^{-n}$

Fitted and reproduced Slope parameter \mathbf{n} different among the reactions

Charmonium contributions not included/removed

\qquad

Efficiency for the Signal Process at Belle

The trigger efficiency is defined for the acceptance after the selection

$\pi^{0} \pi^{0}$ background MC

Experimentally identified $\gamma \gamma^{*} \rightarrow \pi^{0} \pi^{0}$

Reproduced by

Background contamination in signal is estimated by the $\pi^{0} \pi^{0}$ background MC which is normalized to the observation, as 2\%

Calibrations using Radiative-Bhabha (VC) Events

Bhabha-veto threshold is measured in real data of Virtual-Compton process of (e)e γ and is tuned in Trigger Simulator

dots: Exp.
histograms: MC
$\varepsilon_{D R}:$

Exp./MC Ratio for Efficiency for
"Bhabha-Mask" \times "Bhabha-veto"

Comparisons with Previous Measurements and Fits

No rapid growth above $\mathrm{Q}^{2}>9 \mathrm{GeV}^{2}$ is seen in Belle result.
~ 2.3σ difference between Belle and
BaBar in $9-20 \mathrm{GeV}^{2}$ \qquad

