

γγ-physics at KLOE/KLOE-2

D. Babusci (INFN-LNF) (for the KLOE/KLOE-2 Collaborations)

Outline

▷ DAΦNE & KLOE

γγ–physics at KLOE (no tagging)

•
$$\gamma\gamma \rightarrow \eta$$

• $\gamma\gamma \rightarrow \pi^0\pi^0$

γγ–physics at KLOE-2 (tagging)

- HET and LET detectors
- $\gamma\gamma \rightarrow \pi^0\pi^0$, $\Gamma (\pi^0 \rightarrow \gamma\gamma)$ and TFF meas.

Conclusions

$DA\Phi NE @ LNF$

KLOE @ LNF

$$\gamma\gamma - \text{physics}$$

 $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-X$

$$\dot{N}_X = L_{ee} \int \mathrm{d}W_{\gamma\gamma} \frac{\mathrm{d}L}{\mathrm{d}W_{\gamma\gamma}} \sigma(\gamma\gamma \to X)$$

quasi-real photons

 J^{PC} (X) = 0^{±+}, 2^{±+} (vs. J^{PC} = 1⁻⁻ in 1 γ case)

 $\mathbf{e^+e^-}
ightarrow \mathbf{e^+e^-} \, \boldsymbol{\eta}$

L = 242.5 pb⁻¹ off-peak data (
$$\sqrt{s}$$
 = 1 GeV)

$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

• 6
$$\gamma$$
 only w/ E > 15 MeV,
 $\theta \in$ (23, 157) deg, |t-r/c| < 3 σ_{t}

- no tracks in DC
- $\gamma\gamma$ pairing for $\pi^{0}s$

$$\chi^2_{\mathrm{pair}} = \sum_{ij} \left[rac{m_{\gamma_i \, \gamma_j} - m_{\pi^0}}{\sigma(m_{\gamma_i \, \gamma_j})}
ight]^2$$

• kin. fit requiring $M_{6\gamma}$ = m_{η}

•
$$2\gamma$$
 only w/ E > 15 MeV,
 $\theta \in$ (23, 157) deg, |t-r/c| < 3 σ_t

 $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$

- 2 tracks w/ opposite curvature from IP; |p₁| + |p₂| < 700 MeV; e/π likelihood
- $\gamma\gamma$ pairing for π^{0}
- kin. fit requiring $M_{\pi\pi\gamma} = m_{\eta}$

main bckg:
$$e^+e^- \rightarrow \eta\gamma$$

 $e^+e^-
ightarrow e^+e^- \pi^0 \pi^0$

combination of a cut-based and multivariate (MV) analysis

✓ (main) analysis cuts

- no tracks in DC
- 4 γ only w/ E > 15 MeV, $\theta \in$ (23, 157) deg, |t-r/c| < 5 σ_t
- no late clusters (reject K_SK_L bckg)
- γγ pairing

$$\chi_{\pi\pi}^2 = \frac{(m_{\pi^0} - m_{ij})^2}{\sigma_{ij}^2} + \frac{(m_{\pi^0} - m_{kl})^2}{\sigma_{kl}^2}$$

cut on photons energy spread

MC: full 4-body Nguyen, Piccinini, Polosa – EPJ C47, 65 (2006) 10

 $e^+e^- \rightarrow e^+e^- \pi^0 \pi^0$

selected sample contaminated by a residual low mass, high- P_T bckg

 \rightarrow P_L asimmetry \rightarrow hint of machine bckg

new strategy: select pathological bckg directly from data and use it in a multivariate analysis → cut on MVA output

✓ multivariate analysis

- machine bckg selected from poorly prompt events ($|t r/c| > 5 \sigma_t$)
- bckg sample & MC sample used to train a MVA analysis to discriminate bckg from signal
- application to data: (for each event) likelihood for signal vs bckg
- cut on likelihood and subtract from data

TMVA package used

weights from $M_{4\gamma}$ fit

P_L asimmetry mainly due to bckg

xp /Np (N/l)

K_S**K**_L

ηγ

γγ

 $\omega \pi^0$

f₀γ, a₀γ,

 $e^+e^-
ightarrow e^+e^- \pi^0 \pi^0$

✓ quite good data – MC agreement ✓ results quite stable respect to the cut on TMVA output (still some discrepancy between ε_{MC} & ε_{data})

Work in progress:

- efficiency for the signal
- Iuminosity function

 $\sigma(\gamma \gamma \rightarrow \pi^0 \pi^0)$

Resonant contribution $\gamma\gamma \rightarrow \sigma \rightarrow \pi^0\pi^0$

KLOE-2 @ LNF

i.e. $\gamma\gamma$ -physics at ϕ -peak

$\gamma\gamma$ process

channel	Total Production		decay mode	esc.particle	events	bckg to:
	$(L = 10 \text{ fb}^{-1})$	K _S (π ⁰ π ⁰) K _I	K,	~ 10 ⁹	$\pi^0\pi^0$	
$e^+e^- \rightarrow e^+e^-\pi^0$	4 × 10 ⁶		K _S (π ⁺ π ⁻) K _L	K	~ 2 × 10 ⁹	_
$e^+e^- \rightarrow e^+e^- \eta$	10 ⁶		π ⁺ π ⁻ π ⁰	π^0	~ 10 ⁹	π'π-
$e^+ e^- \rightarrow e^+ e^- \pi^+ \pi^-$	2 × 10 ⁶		η(γγ) γ	γ	~ 10 ⁸	η
$e^+e^- \rightarrow e^+e^-\pi^0\pi^0$	2 × 10 ⁴		$\pi^0(\gamma\gamma) \gamma$	γ	~ 5 × 10 ⁸	π^0

> kinematics cut (mainly from p_T) \rightarrow rejection factor < 100

hopeless w/o tagging of the scattered e[±]

Tagging

scattered e[±]

- ✓ small θ → escape KLOE detection
- ✓ $E_e < 510 \text{ MeV} \rightarrow \text{deviate from equilibrium orbit}$ while propagating along machine optics after IP

off-energy particles tracked along machine optics w/ BDSIM package (Geant4 toolkit)

LET (Low Energy tagger)

- inside KLOE (1 m from IP)
- energy range = 160-400 MeV

HET (High Energy tagger)

- after 1st dipole (11 m from IP)
- energy range = 420-495 MeV

$DA\Phi NE$ upgrade

new interaction scheme implemented

- Large beam crossing angle at IP (2 x 25.64 mrad)
- Reduced beam size at crossing point
- Sextupoles for crab-waist configuration at IP

LETs

NO correlation between E and θ of final leptons \rightarrow Calorimetric detector

✓ Inside KLOE detector (~ 1m)

✓ 20 LYSO Crystals read by SiPM (not sensitive to KLOE B field) \rightarrow (7.5 x 6 x 12) cm³

✓ σ_E < 10% @ E > 150MeV

HETs

1st bending dipole after IP acts as a spectrometer, separating particles of different energy in the range (420 - 495) MeV

Strong correlation between E and deviation from nominal orbit for final leptons \rightarrow Position detector

$\mathbf{e^+e^-} ightarrow \mathbf{e^+e^-} \, \pi^0 \pi^0$

$\gamma\gamma$ events tagged by the coincidence of 2 tagging stations

 $\gamma\,\gamma \to \pi^0 \pi^0$

 $\mathbf{e^+e^-}
ightarrow \mathbf{e^+e^-} \, \pi^0$

HET-KLOE coincidence

measured only for space-like $q^2 > 0.5 \text{ GeV}^2$

 $e^+e^-
ightarrow e^+e^- \pi^0$

HET-HET coincidence

$$\Gamma(\pi^0 \rightarrow \gamma \gamma)$$

theoretical uncertainty = 1% best experimental result from PrimEx @ JLAB $\rightarrow 2.8\%$

 $e^+e^- \rightarrow e^+e^- \pi^0$

Experimental measurements (and theoretical constraints) of relevant $\pi\gamma *\gamma *$ FF can help to constrain the models and reduce the uncertainties in $a_{\mu}^{had. LbL}$

KLOE-2 data \rightarrow reduction by a factor ~ 2 in the uncertainty affecting the (dominant) π^0 contribution (details in EPJ C72, 1917 (2012))

Conclusions

KLOE
$$(\sqrt{s} = 1 \text{ GeV})$$

1. $e^+e^- \rightarrow e^+e^-\eta$

published

- studied in $\eta \to \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^0 \, \& \, \eta \to 3 \pi^0 \, \text{chs}$
- X-sect. evaluated and $\eta \rightarrow \gamma \gamma$ width extracted

2. $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ work in progress

- excess of events just above threshold
- contamination from machine bckg handled using MVA
- \approx 2600 $\gamma\gamma \rightarrow \pi^0\pi^0$ candidate events sample

Conclusions

KLOE - 2 (\peak)

- ✓ detector upgrades (taggers, inner tracker,...) completed
- ✓ expect to collect $O(10 \text{ fb}^{-1})$ in the next 3 years
- \checkmark $\gamma\gamma \rightarrow \pi^0\pi^0$ (tagged)
- ✓ promising $\gamma\gamma \rightarrow \pi^0$ analysis w/ 5-6 fb⁻¹
 - 2γ width at 1% (stat.) accuracy, better than current world av.
 - First measurement of TFF in the space-like low Q² region (0.01 – 0.1) GeV² w/ statistical error < 6% in each bin
 - consistency check for TFF parametrizations
 - model dependence reduction of a_{μ}^{LbL}
 - factor ~2 error improvement on a_{μ}^{LbL}

SPARE SLIDES

 $e^+e^- \rightarrow \eta\gamma$

used as a constraint in the fit for $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ analysis

 $\sigma(\sqrt{s} = 1 \text{ GeV}) = (856 \pm 8_{\text{st.}} \pm 12_{\text{sys.}} \pm 11_{\text{BR}}) \text{ pb}$

The π^0 case: width and TFF

π^0 case: width measurement

Width extraction
$$\Gamma(\pi^0 \to \gamma\gamma) = \frac{N_{\pi^0}}{\epsilon L} \frac{\tilde{\Gamma}(\pi^0 \to \gamma\gamma)}{\tilde{\sigma}(e^+e^- \to e^+e^-\pi^0)}$$
 $F_{\pi^0\gamma^*\gamma^*}^2(q_1^2 = 0, q_2^2 = 0) = \frac{4}{\pi\alpha^2 m_{\pi}^3} \Gamma(\pi^0 \to \gamma\gamma)$
Invariant Mass from e^{*}e⁻
 $10^3 \int_{0}^{10^3} \int_{0}^{10$

HET detectors: beam tests

Main purpose: distinguish signals coming from two consecutives bunch-crossings \rightarrow 2.7 ns spacing

The whole electronic chain is properly working

- \rightarrow Double Threshold system is OK
- \rightarrow TDC resolution is ~ 300 ps < 2.7 ns
- \rightarrow HET calibration is ongoing

→ THE DETECTOR IS READY FOR DATA ACQ. WAITING FOR DA Φ NE COMMISSIONING !