International Workshop on e+e- collisions from Phi to Psi 2013 PHJ 3 Rome, 9th -12th September 2013 "Sapienza" University - Physics Department

Status of Monte Carlo generators for gamma-gamma physics

Sergiy Ivashyn

NSC "KIPT" and V.N.Karazin Kharkiv National University (Kharkiv, Ukraine)

September 9, 2013

Outline

Intro to $\gamma^*\gamma^*$ physics

\checkmark Monte Carlo for $\gamma^*\gamma^*$

- ✓ Rad.corrs
- ✓ Summary

Gamma-gamma production

two photons are being exchanged in t-channel

Reviews of gamma-gamma physics

- [Terazawa, Rev.Mod.Phys. 45 (1973) 615]
- [Budnev, Ginzburg, Meledin, Serbo, Phys.Rep. 15 (1975) 181]
- [Wagner, "Photon photon reactions" (1983)]
- [Berger, Wagner, Rev.Mod.Phys. 146 (1987) 1]

- main physics problems
- basic formulae
- equivalent photon approxiamtion (EPA)
- basic experimental approaches ("single-tag", "double-tag")

Physics highlights

production of hadrons

- Adler-Bell-Jackiw anomaly
 - $(\gamma^*\gamma^*
 ightarrow$ odd number of pseudoscalars)
- ullet continuum study ($\gamma^*\gamma^* o \,$ pair of mesons)
- scalar and tensor mesons
- meson mixing, symmery breaking patterns
- polarizabilities

. . .

production of other particles

- new particle searches ($\gamma^*\gamma^* o X$)
- QED studies ($\gamma^*\gamma^*
 ightarrow \mu^+\mu^-$)

Gamma-gamma experiment. Double-tag

 detecting (tagging) both leptons access to both variables: t₁ and t₂

Gamma-gamma experiment. Single-tag

• tagging one lepton measure only one invariant, $Q^2 = -t$

Intro to $\gamma^*\gamma^*$ physics

Different regions of interest

large \sqrt{s}

- good EPA, high σ
- low BG from annihilation channel

small \sqrt{s}

This is where we live "from ϕ to ψ "

- poor EPA, small σ
- BG from annihilation channel

Phenomenology depends on the scale of \sqrt{s}

Gamma-gamma physics in this talk

Gamma-gamma production of hadrons

exclusive particle production via the *photon-photon* fusion sub-process of the e^+e^- scattering. $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-\mathcal{P}$

Focus on

- small \sqrt{s} (up to few GeV)
- one, two, at most three particles produced

Physics context

Two-photon transition form factors

Shape, slope

[Czyż, Ivashyn, Korchin, Shekhovtsova, Phys.Rev. D85 (2012) 094010]

Asymptotics ("the BaBar puzzle")

[Dorokhov, JETP Lett. 92 (2010) 707]

[Bakulev, Mikhailov, Pimikov, Stefanis, Phys.Rev. D86 (2012) 031501, D87 (2013) 094025]

Impact on muon g – 2 (hadronic light-by-light scattering)

[Jegerlehner, Nyffeler, Phys.Rep. 477 (2009) 1]

[Babusci et al., Eur.Phys.J. C72 (2012) 1917]

Zhevlakov, Radzhabov, Dorokhov, Russ.Phys.J. 53 (2010) 625]

@ PhiPsi 13

Recent/ongoing/planned data analyses

See today's talks

D.Babusci — KLOE/KLOE-2 $\sqrt{s} \approx 1.02 \text{ GeV}$

•
$$\mathcal{P} = \pi^0, \pi^0 \pi^0, \eta$$

S.Uehara — BELLE $\sqrt{s} \approx 10.58 \text{ GeV}$

•
$$\mathcal{P}=\pi^{0},\,\pi^{0}\pi^{0},\,\pi^{+}\pi^{-},\,\pi^{0}\eta,\,m{K}ar{K}$$

On Thursday

X.Song — BES-III $\sqrt{s} \approx 3.77$ GeV

•
$$\mathcal{P}=\pi^{0},\,\eta,\,\eta^{\prime}$$

Intro to $\gamma^*\gamma^*$ physics

Main requirements for MC

- High efficiency under a typical event selection
- Realistic phenomenology
- Realistic QED radiative corrections

MC used in experiments

The collaborations typically use their pivate MC

- KLOE (a MC by Nguyen, Piccinini and Polosa)
- CLEO (TwoGam by D.Coffman / V.Savinov)
- Belle (TREPS by S.Uehara)
- BES-III (UDOD by V.Bytev and A. Zhemchugov and TwoGam from DELPHI)

Lately: publicly available MC generators (via CPC)

- KLOE-2, BES-III (EKHARA)
- BaBar (GGRESRC)

Available MC: small \sqrt{s}

GGRESRC

[Druzhinin, Kardapoltsev, Tayursky, arXiv:1010.5969, to appear in CPC (2013)]

•
$$\gamma\gamma^* \to \pi^0, \eta, \eta', \eta_c$$

- simple VMD form factors
- rad.corrs according to modified prescription of

[Ong, Kessler, Phys.Rev. D38 (1988) 2280]

[Ong, Carimalo, Kessler, Phys.Lett. B142 (1984) 429]

Available MC: small \sqrt{s}

EKHARA

http://prac.us.edu.pl/~ekhara

[Czyż, Ivashyn, Comput.Phys.Commun., 182 (2011) 1338]

- $\gamma^*\gamma^* \to \pi^0, \, \eta, \, \eta'$
- custom, fine-tuned form-factors

[Czyż, Ivashyn, Korchin, Shekhovtsova, Phys.Rev. D85 (2012) 094010]

rad.corrs not public yet

Available MC: large \sqrt{s}

GALUGA

[Schuler, Comput.Phys.Commun., 108 (1998) 279]

- $\gamma^*\gamma^* \to \dots$ (30 mesons)
- Based on Budnev formalism

[Budnev, Ginzburg, Meledin, Serbo, Phys.Rep. 15 (1975) 181]

• models for
$$\gamma^*\gamma^* o \dots$$

- ✓ const. quark model
- VMD
- no rad.corrs
- highly effective mapping

Available MC: large \sqrt{s}

GaGaRes

[Berends, von Gulik, Comput.Phys.Commun., 144 (2002) 82]

- $\gamma^* \gamma^* \rightarrow {}^1S_0 (0^-), {}^3P_J (J^+) (J = 0, 1, 2), {}^1D_2(2^-)$ resonances of *u*, *d*, *s*, *c*, *b* quarks
- Based on *Density matrix formalism* (hard scattering)

[Schuler, Berends, van Gulik, Nucl. Phys. B 523 (1998) 423]

- no rad.corrs
- special mapping for no-tag, single-tag and double-tag

- the phenomenology can be not appropriate for small \sqrt{s} physics
- the algorithms can teach us a lot

GALUGA mappings \Rightarrow GGRESRC, EKHARA

Leading corrections

- virtual correction to the vertex
- soft photon emission
- hard photon emission
- self energy / vacuum polarization
- box diagrams (extra photon exchange)

Standard approach to rad.corrs

- Approximations for "Soft+Virtual"
- small t (leading terms in Q^2/m_e^2)
- large *t* (leading terms in m_e^2/Q^2)
- Intergrated hard photon emission
 such a way that |T_{Hard}|² ⇒ δ_H × |T_{LO}|²

$$\frac{d\sigma}{dQ^2} \Rightarrow \left(1 + \delta(Q^2)\right) \times \frac{d\sigma_0}{dQ^2}$$

or

$$\sigma \Rightarrow (\mathbf{1} + \delta) \times \sigma_{\mathbf{0}}$$

Example: approx. rad.corrs

Ong, Kessler (1988)

[Ong, Kessler, Phys.Rev. D38 (1988) 2280]

[Ong, Carimalo, Kessler, Phys.Lett. B142 (1984) 429]

In a modified form, implemented in GGRESRC

[Druzhinin, Kardapoltsev, Tayursky, arXiv:1010.5969]

Used in BaBar data analyses

[Aubert et al., Phys.Rev. D80 (2009) 052002]

[del Amo Sanchez at al., Phys.Rev. D84 (2011) 052001]

[Lees et al., Phys.Rev. D81 (2010) 052010]

A safe approach to rad.corrs

- use exact QED formulae
- no analytic integration of hard photon spectrum
- implement in MC
- make it numerically efficient

Under development in EKHARA MC generator

- The $\gamma\gamma$ MC generators are doing well
- Some of them are distributed under CPC licence
- The algorithm lessons from LEP era generators
- Improvement in rad.corrs is needed and foreseen
- 2 and 3 meson cases to be implemented

Summary

Spare parts

Transition form factors

form factors in resonance effective chiral theoryimplemented in EKHARA

[Czyż, Ivashyn, Korchin, Shekhovtsova, Phys.Rev. D85 (2012) 094010] http://prac.us.edu.pl/~ekhara

Soft photon emission

- Soft is what we never observe
- Contains infra-red divergent part (to be cancelled by virtual corrections)
- *M*₀ separation of hard and soft photon

Virtual. Positron line

IR-divergent part cancels by soft corrssimilar correction for the electron line

Virtual. Vacuum polarization

- e^- , μ^- , τ^- loops are there
- hadronic vac.pol. is also there
- similar correction for the electron line

Hard photon emission. Positron line

- *M*₀ separation of hard and soft photon (matching)
- +1 particle in the final state
- similar correction for the electron line

Pentabox contribution

"contributions of the five-point functions will always be negligible or irrelevant"

[van Neerven, Vermaseren, Phys.Lett. B142 (1984) 80]

Ong, Kessler. Final formula

Rad.corr for single-tag case

$$\delta = \delta_{V+S} + \delta_{HI} + \delta_{HF}$$

= $-\frac{\alpha}{\pi} \left(\left(\ln \frac{1}{r_{max}} - \frac{17}{12} \right) (L-1) + \frac{25}{36} \right)$

 \checkmark depends only on Q^2 (via L) and r_{max}

- $L \equiv \ln \frac{Q^2}{m^2}$
- r_{max} is maximal energy of undetected ISR hard photon normalized to the beam energy, typically: $r_{max} \ll 1$

Example: exact, but integrated

[Landrø, Mork, Olsen, Phys.Rev. D36 (1987) 44]

- Start with the exact formulae for the rad.corrs
- Integrate the hard-photon spectrum
- Total rad.corr is then given only by the vac.pol. contributions (the rest gets fully cancelled)

Final formula

 $\delta = \delta_{\textit{vac.pol.}}$

Why integrated results are bad

- intergrated form is good for analytical exercises
- for MC one needs unintegrated expressions

- differential cross section spans more than five orders of magnitude
- integrated rad.corr with small uncertainty can in fact be dramatically biased in the tail

EKHARA rad.cors. Work in progress

- Check independence of result from
 - \checkmark IR regulator λ
 - \checkmark Soft-Hard matching scale M_0
- Developing efficient mappings
- To compare with GGRESRC