Rome, 9 - 12 September 2013 "Sapienza" University

Charm physics with D and D_s at BESIII

ZHAO Guang Institute of High Energy Physics, China On behalf of BESIII Collaboration

International Workshop on e+e- collisions from Phi to Psi 2013 Sep 9th 2013, Universita' de Roma La Sapienza, Italy

Outline

Introduction

Preliminary results from BESIII

- Quantum correlation analysis on $D^0\overline{D}^0$ mixing
- Leptonic D decays
- Semi-leptonic D decays
- Hadronic D decays
- Rare D decays
- D_s decays

Summary

Major charm physics

Precision quark flavor physics

- Decay constants
- Form factors
- V_{CKM} extraction
- Validate QCD

Probe for New Physics (NP)

- $D^0 \overline{D}^0$ mixing
- Searching for CP violation decays of D mesons
- Searching for rare decays of D mesons

BESIII detector

Charm meson production near threshold

• Near the peak of $\psi(3770)$ resonance, only $D\overline{D}$ pairs are produced

Pros

- ✓ Clean environment
- ✓ Known initial energy and quantum numbers (quantum correlated for $D^0\overline{D}^0$ pair)
- ✓ Both D and \overline{D} can fully reconstructed
- ✓ Absolute measurement

$\vec{p}_{\overline{D}}, E_{\overline{D}}$

Analysis technique

- Single tag, Double tag, Flavor tag, CP tag

Data samples

• We have the largest $\psi(3770)$ dataset

- We have also collected 482 pb⁻¹ ψ(4040) data @ 4.009 GeV
 - Primary to search XYZ particles
 - Enhanced $D_s D_s$ production
 - Below $D_s D_s^*$ threshold, low bkg

Quantum correlation analysis

• $D^0 \overline{D}^0$ mixing

- − Flavor eigenstate ≠ mass eigenstate
- Expected to be very small in SM, sensitive to New Physics

Mixing parameters

- Mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta \Gamma}{2\Gamma}$
- Mixing rate: $R_M = \frac{x^2 + y^2}{2}$
- D^0/\overline{D}^0 relative strong phase: δ
- Effective parameters: $y' = ycos\delta xsin\delta$; $x' = ysin\delta + xcos\delta$

QCA primarily sensitive to y, $cos\delta$

Quantum correlation @ $\psi(3770)^{BESIN}$

Running near $c\overline{c}$ threshold produces quantum correlated D^0 and \overline{D}^0 $\checkmark e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$ [C = -1] \checkmark CP+ CP- decays are enhanced

Time-integrated decay rates

Correlated amplitudes

Selected references:

- Goldhaber and Rosner, PRD 15, 1254 (1977)
- Bigi and Sanda, PLB 171, 320 (1986)
- Xing, PRD 55, 196 (1997)
- Gronau, Grossman, Rosner, PLB 508, 37 (2001)
- Atwood and Petrov, PRD 71, 054032 (2005)
- Asner and Sun, PRD 73, 034024 (2006); PRD 77, 019901(E) (2008)

Final States			Time-Integrated Rate $(\times A_i^2 A_j^2)$	·
	i	Ţ	$1 + r_i^2 r_j^2 - 2 r_i r_j \cos(\delta_i + \delta_j) \leftarrow$	No y dependence
Exclusive	i	j	$r_i^2 + r_j^2 - 2 r_i r_j \cos(\delta_i - \delta_j)$	
Inclusive	i	X	$1 + r_i^2 + 2y r_i \cos \delta_i$	Same as incoherent decay

For some special states:

- CP eigenstates: r = 1, $\delta = 0$ or π
- Semileptonic: r = 0

Parameters can be extracted by ratios of yields of carefully constructed exclusive modes and inclusive modes

- $cos\delta_{K\pi}$: CP mode + flavor mode / CP mode
- y: CP mode + semileptonic mode / CP mode

Strong phase in $D^0 \rightarrow K\pi$ decay

 Omitting higher order mixing parameters and assuming CP conservation, we have

$$- 2r_{K\pi}\cos\delta_{K\pi} + y = (1 + R_{WS})A_{CP \to K\pi}$$
$$- A_{CP \to K\pi} = \frac{B_{D_2 \to K^-\pi^+ - B_{D_1 \to K^-\pi^+}}}{B_{D_2 \to K^-\pi^+ + B_{D_1 \to K^-\pi^+}}}$$
$$- |D_1\rangle = \frac{|D^0\rangle + |\overline{D}^0\rangle}{\sqrt{2}}, |D_2\rangle = \frac{|D^0\rangle - |\overline{D}^0\rangle}{\sqrt{2}}$$

Single Tag (ST): CP tags

- Flavor tags: $K^-\pi^+$, $K^+\pi^-$
- CP+ tags: K^+K^- , $\pi^+\pi^-$, $K_S^0\pi^0\pi^0$, $\pi^0\pi^0$, $\rho^0\pi^0$
- CP- tags: $K_S^0 \pi^0$, $K_S^0 \eta$, $K_S^0 \omega$
- Double Tag (DT): $K\pi$ + CP tags
- $Br(D_{CP\pm} \to K\pi) = \frac{n_{K\pi,CP\pm}}{n_{CP\pm}} \frac{\epsilon_{CP\pm}}{\epsilon_{K\pi,CP\pm}}$ - Most systematics cancelled within $D \to CP \pm$ modes

Preliminary results of $\delta_{K\pi}$

• With measured $Br(D_{CP\pm} \rightarrow K\pi)$, we get

$$-A_{CP\to K\pi} = \frac{B_{D_2\to K^-\pi^+} - B_{D_1\to K^-\pi^+}}{B_{D_2\to K^-\pi^+} + B_{D_1\to K^-\pi^+}} = (12.77 \pm 1.31^{+0.33}_{-0.31})\%$$

 With external inputs of the parameters in HFAG2013 and PDG2012, we get

$$-\cos\delta_{K\pi} = 1.03 \pm 0.12 \pm 0.04 \pm 0.01$$

Compare to CLEO's result

- 0.8 fb⁻¹ ψ (3770) data

PHIPSI13

- Without external inputs: $cos\delta = 0.81^{+0.22+0.07}_{-0.18-0.05}$
- With external inputs: $cos\delta = 1.15^{+0.19+0.00}_{-0.17-0.08}$

Our results have the best precision and compatible with the world average

y_{CP} measurement

Neglect term y² or higher order

$$- y_{CP} \approx \frac{1}{4} \left(\frac{\Gamma_{\ell,CP+}\Gamma_{CP-}}{\Gamma_{\ell,CP-}\Gamma_{CP+}} - \frac{\Gamma_{\ell,CP-}\Gamma_{CP+}}{\Gamma_{\ell,CP+}\Gamma_{CP-}} \right)$$

Tag modes

Type	Modes
CP^+ CP^-	$K^+K^-, \pi^+\pi^-, K_S\pi^0\pi^0$ $K^0_S\pi^0, K^0_S\omega, K^0_S\eta$
l^{\pm}	$Ke\nu, K\mu\nu$

- ST: CP tag
- DT: CP tag + semileptonic tag

Preliminary results

D⁺ leptonic decays

 In the SM, the leptonic decays of the D⁺_(s) provide a clean way to measure the decay constant f⁺_{D(s)}

- Test the LQCD calculation of the decay constant. The verified LQCD can help extract V_{td}, V_{ts} from B_(s) mixing
- Search for possible new physics (charged Higgs contribution, R-parity violating SUSY ...)

Event reconstruction

BESIII

Preliminary results

PHIPSI13

		(b)				
← → →	< 290 at 90% C.L.	MARK-III				
	300 ⁺¹⁸⁰⁺⁸⁰ -150-40	BES-I				
│	371 ⁺¹²⁹ ±25	BES-II				
h-1	209.0±9.3±2.6	CLEO-C				
ø	203.91±5.72±1.97	BES-III (Preliminary)				
н	213±4	LQCD				
H	217±10	LQCD				
H--	206±6±3±22	QL (QCDSF)				
⊢ ∎-	235±8±14	QL(Taiwan)				
 	210±10 ⁺¹⁷ -16	QL (UKQCD)				
H=H	211±14 ⁺² ₋₁₂	QL				
F-0-1	177±21	QSR				
	203±23	QSR				
H-O-I	195±20	QSR(1)				
	210±10	FC				
│, [`] , <mark>`⊢,</mark> ⊸┩,	262±29	IMS				
200 30	0 400 5	500 600				
f_{D^+} [MeV]						

(203.91±5.72±1.97)

Best experimental precision to date!

D semileptonic decays to K and π^{BESIM}

 Charm mesons can decay into other hadrons by emitting a l⁺v lepton pair via the weak interactions

- Use theory for form factors, extract CKM parameters
- Use unitarily for CKM parameters, test QCD
- Verified QCD can help extract V_{ub} from $B \rightarrow \pi \ell \nu$

Event recon. & BR meas.

Tag side:

<mark>4 tag m</mark>	nodes –			
Mode	Data Yield			
$D^0 \to K^- \pi^+$	$159{,}929\pm413$			
$D^0 ightarrow K^- \pi^+ \pi^0$	$323,\!348 \pm 667$			
$D^0\to K^-\pi^+\pi^0\pi^0$	$78{,}467\pm480$			
$D^0 \to K^- \pi^+ \pi^- \pi^+$	$211,\!910\pm 550$			

Partial decay rates and $f(q^2)$

Form factor fits

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0})\right]^{k}$$

Series expansion: Becher and Hill PLB 633, 61 (2006)

Could fit: $f_{+}(0)$, $r_1 = a_2/a_1$, $r_2 = a_3/a_1$

Comparisons of form factor normalization results

- Numbers are from HFAG 2012 report (arXiv:1207.1158)
- Error bar of BESIII prel. will shrink with full data

Dalitz plot analysis of $D^+ o K_S^0 \pi^+ \pi^0$

- There are many three bodies final states with large BR and including $K\pi$ and $\pi\pi$ two body resonances
- Kπ S wave and low-mass Kπ scalar resonance κ have been observed significantly in earlier experiments (E691-791, CLEO) through MIPWA in K⁻π⁺π⁺
- The $D^+ \rightarrow K_s^0 \pi^+ \pi^0$ decay is also a golden mode. Previous dalitz plot analysis of $K_s^0 \pi^+ \pi^0$ from MARK III only include $K_s^0 \rho^+$ and $\overline{K}^{*0} \pi^+$
- With much larger dataset, we can do much more precise measurement.

Data fitting

Float $\overline{K}(1430)^0$ and $\kappa(800)^0$ parameters

Resonance parameters

Resonance	Parameter		BES-III	E791	CL	EO-c
	(MeV)		inary	Model C	Model C	Model I2
$\overline{K}_{0}^{*}(1430)$	BW	Mass	$1464 \pm 9^{+9}_{-28}$	1459 ± 14	$1463.0 \pm 0.7 \pm 2.4$	$1466.6 \pm 0.7 \pm 3.4$
		Width	$100 \pm 7 \pm 11^{+6}_{-26}$	175 ± 17	$163.8 \pm 2.7 \pm 3.1$	$174.2 \pm 1.9 \pm 3.2$
PDG	Flatt	Mass	$8^{-1482 \pm 10}$		1462.5 ± 3.9	1471.2 ± 0.8
1425 ± 50		$g_{K\pi}$	585 ± 14		532.9 ± 8.5	546.8 ± 4.2
270 ± 80		$g_{K\eta}$	0		0	0
		$g_{K\eta\prime}$	452 ± 85		197 ± 106	230 ± 32
κ	BW	Mass	860 ± 11	797 ± 47	809 ± 14	888 ± 2
		Width	446 ± 23	410 ± 97	470 ± 18	550 ± 12
	Pole	Re	$752 \pm 15 \pm 69^{+55}_{-73}$		769.9 ± 6.3	$706.0 \pm 1.8 \pm 22.8$
		Im	$-229 \pm 21 \pm 44^{+40}_{-55}$		-221.2 ± 8.4	$-319.4 \pm 2.2 \pm 20.2$

■ The mass and width of K*0(1430) are consistent with E791 and CLEO-c from $D+\rightarrow K-\pi+\pi+$

The pole of κ(800) is consistent with the model C of CLEO-c

Fit fraction & BR results

Fit fraction & phase

Parameters	Value	Stat	Experimental Errors			Modeling Errors			
			Bkg	Eff	Resol	Total	Shape	Add	Total
NR $FF(\%)$	4.63	0.67	3.45	0.96	0.02	3.59	$^{+2.89}_{-1.50}$	+2.65 -3.24	$+3.93 \\ -3.57$
NR Phase	278.62	5.36	4.32	14.27	0.06	14.91	+5.96 -24.40	+21.61 -11.54	+22.42 -26.99
$\rho(770)^+ \text{FF}(\%)$	83.41	2.19	2.66	0.62	0.01	2.74	+1.02	+6.33	+6.42
$\rho(1450)^+$ FF(%)	2.13	0.22	0.87	0.82	0.01	1.20	+0.62	+0.73	+0.96
$o(1450)^+$ Phase	187.02	2.56	3.03	3.69	. 80	4.78	+8.66	+25.67	+27.09
$\frac{F}{K}^{*}(892)^{0}$ FF(%)	3.58	0.17	0.12	0.11	0.01	0.17	$^{-14.53}_{+0.31}$	-4.63 +0.16	-15.25 +0.35
$\overline{K}^{*}(892)^{0}$ Phase	293.22	1.25	0.73	(C45	0.01	1.63	$^{-0.18}_{+1.12}$	-0.28 +5.67	-0.34 +5.78
$\overline{K}^{*}_{*}(1430)^{0}$ FF(%)	3 66	0.57	WFX	0.42	0.01	0.71	+0.32	+0.66	+0.63 +0.75
$\overline{K}^{*}_{0}(1430)^{0}$ Phase	334 36	20	7.38	3.63	0.04	8 23	-0.29 +0.33	-0.74 +2.04	-0.80 +2.07
$\overline{K}^{*}(1680)^{0}$ FF(%)	1.97	0.11	0.60	0.16	0.01	0.63	-9.53 +0.51	-27.43 + 0.01	$^{-29.04}_{+0.52}$
$\overline{W}^{*}(1000)$ PP(70)	051.01	1.00	0.00	5.00	0.01	10.14	-0.07 +5.70	-1.07 +6.92	-1.08 +8.97
K (1680) ^o Phase	251.81	1.90	8.45	5.60	0.08	10.14	-1.21	-27.87	-27.90
κ^0 FF(%)	7.73	1.19	2.43	3.09	0.01	3.94	+1.93 -2.64	+4.70 -0.10	+5.09 -2.65
κ^0 Phase	92.89	6.23	24.24	13.55	0.16	27.77	+13.17 -6.56	+15.72 -21.52	+20.51 -22.50
$NR + \kappa^0 FF(\%)$	18.59	1.69	1.08	0.95	0.01	1.44	+1.54 -3.70	+0.50 -2.21	+1.62 -4.31
$K_S^0 \pi^0$ S wave	17.29	1.34	2.01	0.49	0.01	2.07	$+0.63 \\ -3.75$	$+2.58 \\ -0.59$	$+2.66 \\ -3.80$

Fit fractions * world average $Br(D^+ \rightarrow K_S^0 \pi^+ \pi^0)$

Mode	Partial Branching Fraction (%)
$B(D^+ \to K_S^0 \pi^+ \pi^0)$ Non Resonant	$0.32 {\pm} 0.05 {\pm} 0.25 {+} 0.21 {-} 0.25$
$B(D^+ \to \rho^+ K_S^0) \times B(\rho^+ \to \pi^0)$	$5.83 \pm 0.16 \pm 0.30^{+0.08}_{-0.15}$
$B(D^+ \to \rho(1450)^+ K^0 \to B(\rho(1450)^+ \to \pi^+ \pi^0)$	$0.15 \pm 0.02 \pm 0.09 ^{+0.05}_{-0.11}$
$B(D^+ \to \overline{K}^*(\mathfrak{S2}^{0} \star) \times B(\overline{K}^*(892)^0 \to K^0_S \pi^0)$	$0.250 \pm 0.012 \pm 0.015^{+0.022}_{-0.024}$
$B(D^+ \rightarrow X_0^* (1430)^0 \pi^+) \times B(\overline{K}_0^* (1430)^0 \rightarrow K_S^0 \pi^0)$	$0.26 \pm 0.04 \pm 0.05 ^{+0.03}_{-0.06}$
$B(D \hookrightarrow \overline{K}^*(1680)^0 \pi^+) \times B(\overline{K}^*(1680)^0 \to K^0_S \pi^0)$	$0.09 {\pm} 0.01 {\pm} 0.05 {+} {}^{+0.04}_{-0.08}$
$B \longrightarrow \overline{\kappa}^0 \pi^+) \times B(\overline{\kappa}^0 \to K^0_S \pi^0)$	$0.54 {\pm} 0.09 {\pm} 0.28 {+} {}^{+0.14}_{-0.19}$
$NR + \overline{\kappa}^0 \pi^+$	$1.30 \pm 0.12 \pm 0.12^{+0.11}_{-0.30}$
$K_S^0 \pi^0$ S wave	$1.21 \pm 0.10 \pm 0.16^{+0.05}_{-0.27}$

Search for $D^0 \rightarrow \gamma \gamma$

- Flavor Changing Neutral Current (FCNC) ($c \rightarrow u + \gamma$) is forbidden at tree level
- Dominated by long-distance effect
- In SM, $Br(D^0 \to \gamma \gamma) \sim 10^{-8}$ or less (see Fajfer et al. PRD 64, 074008 (2001))
- In minimal super-symmetric standard model, the predicted rate is ~10⁻⁶ (see Prelovsek and Wyler, PLB500, 304 (2001))

Preliminary results

Upper limit

 $B(D^0 \rightarrow \gamma \gamma)/B(D^0 \rightarrow \pi^0 \pi^0)$ < 5.8 x 10⁻³@90%C.L.

Experiments	BESIII	BABAR	CLEOc	PDG11	
B ^{up} (D ⁰ →γγ) [×10 ⁻⁶]	<4.6	<2.2	<8.63	<27	

- Another double-tag technique is ongoing
- Intend to look for other radiative decays of D^+ , D^0 and D_s^+ as well

D_s decays

- Taken data @ 4.009 GeV. Only D⁺_sD⁻_s pairs are produced (below D_sD^{*}_s threshold)
- Many analysis can be studied by exploiting the "tagging" technique (MARK III's method)
- D⁺_s tagging is clean compared to CLEO-c's D_sD^{*}_s data taken @ 4.17 GeV
 - But statistics limited : Low Xsection compared to 4.17 GeV (See slide 5)

D_s tagging

Several ongoing analysis Results will come out soon

Summary

Many new results come from BESIII

- Quantum correlation analysis
 - Strong phase $\delta_{K\pi}$: with the best accuracy
 - mixing parameter y_{CP} : compatible with the world average
- *D*⁺ leptonic: most precise *D*⁺ → μ⁺ν measurement
- *D*⁰ semiletonic: 1/3 data analyzed *D*⁰ → *K*/*πev*, comparable precision to CLEO-c, better precision expected
- − D^+ hadronic: dalitz analysis of $D^+ \rightarrow K_S^0 \pi^+ \pi^0$ is performed, the measured partial branching fraction are consistent with E791 & CLEO-c
- D^0 Rare decay: have searched for $D^0 \rightarrow \gamma \gamma$, confirm the latest results from BaBar
- D_s^+ decays: clean tags, results coming soon

Thanks for your attention!