International workshop on e⁺e⁻ collisions from Phi to Psi 2013

CHARM MIXING AND CP VIOLATION AT B-FACTORIES

Gianluigi Cibinetto (INFN Ferrara - BABAR collaboration)

Outline

- Introduction
- Indirect CPV and mixing in two-body decays
- Direct CPV
 - $D^{\pm} \rightarrow K_S^0 K^{\pm}, D_s^{\pm} \rightarrow K_S^0 K^{\pm}, D_s^{\pm} \rightarrow K_S^0 \pi^{\pm}$ analysis
 - $D^0 \rightarrow h^+h^-$ and ΔA_{CP}
 - D $^{\pm}$ \rightarrow K $^{+}$ K $^{-}$ π $^{\pm}$ analysis
- Summary and outlook

Flavor mixing in the charm sector

- Mass eigenstate \neq flavor eigenstate $\mid D_{1,2} \rangle = p \mid D^0 \rangle \pm q \mid \bar{D}^0 \rangle$
- m_{\rm I,2} and $\Gamma_{\rm I,2}$ are mass and width of D_{\rm I,2} and $\Gamma_D=(\Gamma_1+\Gamma_2)/2$
- Mixing parameters

$$x = \frac{m_1 - m_2}{\Gamma_D}, \quad y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma_D}$$

- Short distance contributions are GIM and CKM suppressed in the Standard Model.
- Long distance contributions are dominant but affected by large uncertainties.

- Mixing in the D^0 system is well established, significance ~10 σ (*Int.J.Mod.Phys.A21* (2006) 5686-5693).
- Standard Model (SM) predictions affected by large uncertainties: x_{theo} , $y_{theo} \sim O(10^{-2}-10^{-7})$.
- Measurements of *x* and *y* are at the upper limit of SM, New Physics may contribute in short-distance diagrams.

CP violation in the charm sector

• CPViolation in decay to final states f and \overline{f} $|A_f| \neq |\overline{A}_{\overline{f}}|$ Two amplitudes with different weak and strong phases

$$A_{CP} = \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2}$$

• CP violation in mixing if $r_m = |q/p| \neq 1$ Probability of $D^0 \rightarrow \overline{D}^0$ is different than CP conjugate $\overline{D}^0 \rightarrow D^0$

$$A_M = \frac{R_M^2 - R_M^{-2}}{R_M^2 + R_M^{-2}}, \qquad R_M = \frac{q}{p}$$

- CP violation in the interference between the decay with and without mixing if $\phi_{\,f} \neq 0$

$$\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} = \left| \frac{\bar{A}_f}{A_f} \right| \exp[i(\delta_f + \phi_f)]$$

strong + weak phase

Why search for CPV in charm decays?

- CPV in charm decays is expected to be very small in the Standard Model (SM), at the level of 0.1% or below.
- CP-violating asymmetries in charm decays provide a unique probe for physics beyond the Standard Model (SM).
- New Physics can enhance CP violating observables.
- Recent results from LHCb and CDF have renewed the interest for searching new physics in the charm sector:

 $a_{CP}^{
m ind}~=~(0.015\pm 0.052)\%$

$$\Delta a^{
m dir}_{CP}~=~(-0.333\pm 0.120)\%$$

Current data consistent with no CPV at 2.0 σ Is this an observation of new physics? No straightforward answer, could be SM or NP.

Indirect CPV and mixing in two-body decays

• Perform a fit to different D⁰ decay modes from:

("flavor tagged") at production according to the pion charge BaBar and Belle $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$, $K^+ K^-$ and $\pi^+ \pi^-$ ("flavor untagged") $D^0 \rightarrow K^- \pi^+$, $K^+ K^-$ only for y_{CP} measurement. Four times BaBar statistics wrt "flavor tagged" sample. Lower purity.

• Experimentally we measure the lifetimes of CP-even and CP-mixed eigenstates.

$$\begin{aligned} \tau^{+} &= \tau(D^{0} \to h^{+}h^{-}) \\ \bar{\tau}^{+} &= \tau(\bar{D}^{0} \to h^{+}h^{-}) \\ \tau_{D} &= \tau(D^{0} \to K^{\mp}\pi^{\pm}) \\ h^{\pm} &= K^{\pm}, \pi^{\pm} \end{aligned} \qquad \text{Mixing:} \quad y_{CP} &= \frac{\tau_{D}}{2} \left(\frac{1}{\tau^{+}} + \frac{1}{\bar{\tau}^{+}} \right) - 1 \\ \text{CP Violation:} \quad \Delta Y &= \frac{\tau_{D}}{2} \left(\frac{1}{\tau^{+}} - \frac{1}{\bar{\tau}^{+}} \right) \end{aligned}$$

if CP conserved $\Rightarrow y_{CP} \equiv y$ and $\Delta Y = 0$

Reconstruction technique

• Measure D⁰ proper time, *t*, and its error σ_t , by reconstructing D⁰ momentum and 3D flight length *L*: Requires a precision vertex detector and a significant flight path.

PHIPSI13 - Rome, September 9th-12th, 2013

G. Cibinetto

 BaBar uses independent datasets of tagged and untagged decays with full dataset 468 fb⁻¹. Simultaneous fit to all decays both tagged and untagged to measure the lifetime.

Belle lifetime ratio analysis

• Belle uses tagged decays.

 $\begin{array}{l} D^{*+} \to D^0 \pi_s^+; D^0 \to K^+ K^- \\ D^{*+} \to D^0 \pi_s^+; D^0 \to \pi^+ \pi^- \\ D^{*+} \to D^0 \pi_s^+; D^0 \to K^- \pi^+, K^+ \pi^- \end{array}$

• Full dataset 976 fb⁻¹

• Many systematics cancel in the relative lifetime measurements. $y_{CP} = (+1.11 \pm 0.22 \pm 0.11)\%,$ $A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%,$

Evidence for mixing at 4.5 σ - no CPV observed

New HFAG averages for y_{CP} and A_{Γ}

Including new BaBar and Belle results: significant improvement in the uncertainty and lower value for $y_{\rm CP}$

G. Cibinetto

Direct CPV in D decays with a K_S in the final state

- CP asymmetry in charm decays with a K_s in the final_state is expected to be (±0.332±0.006)% whether a K⁰ or a K⁰ is produced, due to CPV in K⁰-K⁰ mixing.
- Sizable difference from this value would indicate CP violation in the $|\Delta C|=1$ transition (very small in the SM) indicating possible new physics effects.

$$A_{CP} = \frac{\Gamma(D_{(s)}^{+} \to K_{S}^{0}h^{+}) - \Gamma(D_{(s)}^{-} \to K_{S}^{0}h^{-})}{\Gamma(D_{(s)}^{+} \to K_{S}^{0}h^{+}) + \Gamma(D_{(s)}^{-} \to K_{S}^{0}h^{-})} = A_{CP}^{\Delta C} + A_{CP}^{\bar{K}^{0}} \qquad h = (\pi, K)$$

$$(-0.332 \pm 0.006)\%$$

$$C_{CF}^{\pm} = K_{S}^{0}K^{\pm}$$

$$D_{S}^{\pm} \to K_{S}^{0}K^{\pm}$$

$$D_{S}^{\pm} \to K_{S}^{0}K^{\pm}$$

$$D_{S}^{\pm} \to K_{S}^{0}K^{\pm}$$

$$D_{S}^{\pm} \to K_{S}^{0}\pi^{\pm}$$

$$D^{\pm} \to K_{S}^{0}\pi^{\pm}$$

$$D^{\pm} \to K_{S}^{0}\pi^{\pm}$$

$$Proceed through CF and DCS. single phase and no SM CPV$$

 $D_s^{\pm} \to K_s^0 \pi^{\pm}$ $D^{\pm} \to K_s^0 K^{\pm}$

CP asymmetry generated from interference of tree-level and penguinlevel amplitudes.

Direct CPV in D decays with a K_S in the final state

The reconstructed asymmetry at B-factories

$$A_{rec} = A_{CP} + A_{FB}(\cos\theta_D^*) + A_{\epsilon}^h(p_h^{lab}, \cos\theta_h^{lab})$$

$$A_{CP} = \frac{\Gamma(D^+_{(s)} \to K^0_S h^+) - \Gamma(D^-_{(s)} \to K^0_S h^-)}{\Gamma(D^+_{(s)} \to K^0_S h^+) + \Gamma(D^-_{(s)} \to K^0_S h^-)}$$

CPV from the decay of the charm meson what we want to measure + CPV in the K⁰ system, depends on the K_s^0 lifetime [Grossman and Nir, JHEP 4 (2012), 2]

 $A_{FB}(\cos\theta_D^*)$

Production asymmetry of the D meson, odd as a function of the D meson polar angle in the center-of-mass. Extract directly by measuring reconstructed asymmetry in intervals of the $\cos\theta_{D}^{*}$

 $A^h_{\epsilon}(p_h^{lab}, cos\theta_h^{lab})$

Detection induced component for the π^{\pm} or the K[±]. Corrected from the detection efficiency measured from high-statistics control samples.

Detector induced and F/B asymmetries

• Use a data-driven method to determine charge asymmetry in track reconstruction. Use tracks from $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$, which are free from any physics induced asymmetry.

- Fwd/Bwd asymmetry in **cc** production
- virtual photon interference with virtual Z⁰
- Odd in cosθ^{*}, used to decouple from A_{CP} (constant)

$$A_{FB}(\cos heta_D^*) = rac{A(+|\cos heta_D^*|) - A(-|\cos heta_D^*|)}{2}$$

$$A_{CP}(\cos \theta_D^*) = \frac{A(+|\cos \theta_D^*|) + A(-|\cos \theta_D^*|)}{2}$$

A_{CP} results

PRD 87,052012 (2013)

0				
	D	$D^{\pm} ightarrow K^0_{_S} K^{\pm}$	$D_s^\pm o K_{\scriptscriptstyle S}^0 K^\pm$	$D_s^{\pm} ightarrow K_s^0 \pi^{\pm}$
	A_{CP} value from the fit	$(0.16 \pm 0.36)\%$	$(0.00 \pm 0.23)\%$	$(0.6 \pm 2.0)\%$
	Bias Corrections			
- [Toy MC experiments	+0.013%	-0.01%	-
	PID selectors	-0.05%	-0.05%	-0.05%
l	$K_s^0 - K_L^0$ interference	+0.015%	+0.014%	-0.008%
[A_{CP} corrected value	$(0.13 \pm 0.36 \pm 0.25)\%$	$(-0.05 \pm 0.23 \pm 0.24)\%$	$(0.6 \pm 2.0 \pm 0.3)\%$
	$A_{C\!P}$ contribution from $K^0 - \overline{K}^0$ mixing	$(-0.332 \pm 0.006)\%$	$(-0.332 \pm 0.006)\%$	$(0.332 \pm 0.006)\%$
	A_{CP} value (charm only)	$(0.46 \pm 0.36 \pm 0.25)\%$	$(0.28 \pm 0.23 \pm 0.24)\%$	$(0.3\pm2.0\pm0.3)\%$

D⁰ decays to CP-even eigenstates K^+K^- , $\pi^+\pi^-$

• For final CP eigenstate, indirect CP violation is universal. Difference in timeintegrated CP asymmetry separates non-universal direct CP contribution.

LHCb D⁰ production modes : (1) inclusive semileptonic b-hadron decays (2) direct production of charm $D^{*+} \rightarrow D^0 \pi_s$

Measurement (1): $\Delta A_{CP} = (0.49 \pm 0.30 \pm 0.14)\%$ [arXiv 1303.2614]

Measurement (2): $\Delta A_{CP} = (-0.34 \pm 0.15 \pm 0.10)\%$ [LHCb-CONF-2013-003]

Direct CPV search in Dalitz plot decays $D^+ \rightarrow K^+ K^- \pi^+$

• SCS decays can exhibit direct CP asymmetries due to interference between tree-level transition and $|\Delta C|=1$ penguin-level transition.

Tree level diagram

Penguin diagram

- CP asymmetry can be localized in a specific part of the Dalitz plot or integrated over the entire phase space.
- Search for CPV using 5 different approaches
 - 1) phase space integrated CP asymmetry A_{CP}
 - 2) A_{CP} in 4 different regions of Dalitz plot (A, B, C, D)
 - 3) comparison of the binned D^+ and D^- Dalitz plots
 - 4) comparison of Legendre polynomial moment distributions for K $^+\text{K}^-$ and K- π^+ systems
 - 5) comparison of parameterized fits to Dalitz plot distributions

G. Cibinetto

Direct CPV search in Dalitz plot decays

• Belle uses a complementary approach.

- Belle uses larger dataset of SCS and CF decays to search for CP violation in $D_{(s)}^{+} \rightarrow \Phi \pi^{+}$ $A_{CP}^{D_{(s)}^{+} \rightarrow \phi \pi^{+}} = \frac{\Gamma(D_{(s)}^{+} \rightarrow \phi \pi^{+}) - \Gamma(D_{(s)}^{-} \rightarrow \phi \pi^{-})}{\Gamma(D_{(s)}^{+} \rightarrow \phi \pi^{+}) + \Gamma(D_{(s)}^{-} \rightarrow \phi \pi^{-})}$
- Measures the asymmetry difference between the SCS decay D+→ Φ π^+ and the CF decay D_s^+ → Φ π^+

$$\Delta A_{rec} = \frac{N(D^+) - N(D^-)}{N(D^+) + N(D^-)} - \frac{N(D_s^+) - N(D_s^-)}{N(D_s^+) + N(D_s^-)}$$

- Where the second term is expected to have negligible A_{CP}
- The asymmetry difference cancels the detector-induced asymmetry and other systematics effects.

Direct CPV search in Dalitz plot decays

Belle [PRL 108, 071801 (2012)]

BaBar [PRD 87, 052010 (2013)] $A_{CP} = (0.37 \pm 0.30 \pm 0.15)\%$

 No evidence of CP violation measured as a function of the center-of-mass polar angle of D⁺ meson.

Summary and conclusions

Time-integrated CPV measurements at the B factories

D⁰ modes: direct + indirect CPV

D(s)⁺ modes: direct CPV

• At the B factories was found evidence of CP violation in $D^+ \rightarrow K_s^0 \pi^+$ decays as expected in the SM. Systematic errors kept under control below the 10⁻³ level.

Summary and conclusions

- Searching for CPV in charm decays allows to probe for new physics and puts stringent constraints on new models.
- The current data samples from the B-factories are being used effectively to complete many analyses of mixing and CP violation in Charm decays.
- Evidence for mixing at 5 σ for individual B-factory results. All consistent with no CP violation.
- Direct CP Violation in Charm decays not observed at the e⁺e⁻ collider experiments.
- Hints of CP violation in charm sector cannot rule out SM or NP.

Cabibbo-favored

- examples: $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$
- $\mathbf{A}_{\mathrm{T}} \sim |\mathbf{V}_{\mathrm{cs}}\mathbf{V}_{\mathrm{ud}}|$

singly Cabibbo-suppressed (SCS)

- examples: $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$, $D^+ \rightarrow K^+K^-\pi^+$
- $A_{T} \sim |V_{cd}V_{ud}|, |V_{cs}V_{us}|$

doubly Cabibbo-suppressed (DCS)

- $D^0 \rightarrow K^+ \pi^-$
- $\bullet \quad A_T \sim |V_{cd}V_{us}|$

CF: BR(D⁰ $\rightarrow K^{-}\pi^{+}) = (3.89 \pm 0.05)\%$ SCS: BR(D⁰ $\rightarrow \pi^{+}\pi^{-}) = (1.397 \pm 0.026) \times 10^{-3}$ DCS: BR(D⁰ $\rightarrow K^{+}\pi^{-}) = (1.48 \pm 0.07) \times 10^{-4}$

Indirect CPV and mixing in two-body decays

 Mixing and CP violation observables are obtained from the partial widths of the decays:

$$D^0(\bar{D}^0) \to h^+ h^-, h^\pm = K^\pm, \pi^\pm$$

$$y_{CP} = rac{\Gamma^+ + \overline{\Gamma}^+}{2\Gamma} - 1$$
 $\Delta Y = rac{\Gamma^+ - \overline{\Gamma}^+}{2\Gamma}$
 $\Delta Y = (1 + y_{CP})A_{\Gamma}$ $A_{\Gamma} = rac{\Gamma^+ - \overline{\Gamma}^+}{\Gamma^+ + \overline{\Gamma}^+}$
CP Eigenstates
 Γ^+ is the width of the decay to $D^0 \to CP^+$
 $\overline{\Gamma}^+$ is the width of the decay to $\overline{D}^0 \to CP^+$

if CP conserved $\Rightarrow y_{CP} \equiv y$ and $\Delta Y = 0$

Experimental assumptions:

(i) small mixing $(|x|, |y| \le 1)$ proper time distributions are exponential with corresponding effective lifetimes to very good approximation.

(ii) not sensitive to direct CPV and weak phase does not depend on final state \rightarrow KK and $\pi \pi$ share the same common effective lifetime. [PRD 80, 076008 (2009)]

Belle time-integrated $D^0 \rightarrow K^+\pi^- \pi^+ \pi^-$

New result, 791 fb-1

arXiv:1307.5935

 $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$ "wrong-sign" decays are due to both a doubly-Cabibbo suppressed amplitude and mixing:

Normalize to Cabibbo-favored $D^0 \rightarrow K^- \pi^+ \pi^- \pi^- \text{decays}$

$$egin{aligned} R_{
m WS} &= rac{\Gamma(D^0 \,{
ightarrow}\, K^+ \pi^- \pi^+ \pi^-)}{\Gamma(D^0 \,{
ightarrow}\, K^- \pi^+ \pi^- \pi^+)} \ &= R_D^{} + lpha y' \sqrt{R_D^{}} + rac{1}{2} (x^2 + y^2) \ &(y' \;=\; y \cos \delta - x \sin \delta) \end{aligned}$$

 $\Rightarrow R_{\rm WS} = (0.324 \pm 0.008 \pm 0.007)\%$ $B_{D^0 \to K^+ \pi^- \pi^+ \pi^-} = (2.61 \pm 0.06 \substack{+0.09 \\ -0.08}) \times 10^{-4}$

Take coherence factor α and strong phase δ from CLEOc: $R_D = (0.327 \substack{+0.019 \\ -0.016})\%$

Direct CPV search in Dalitz plot decays

Asymmetry in bins of production angle. [BaBar/Belle]

Model Independent Techniques [BaBar]

Localized CP Asymmetry [BaBar/Belle]

Dalitz Plot Analysis [BaBar]

