

The anomalous process $\gamma\pi\to\pi\pi$ and its impact on the π^0 transition form factor

Bastian Kubis

Helmholtz-Institut für Strahlen- und Kernphysik (Theorie)

Bethe Center for Theoretical Physics

Universität Bonn, Germany

PhiPsi13 Rome, 9/9/2013

$\gamma\pi ightarrow \pi\pi$ and the π^0 transition form factor

Introduction

• testing the Wess–Zumino–Witten chiral anomaly

Dispersion relations...

- ... for two pions: pion vector form factor
- ... for three pions: $\gamma \pi \to \pi \pi$, $\omega/\phi \to 3\pi$
- linking hadronic decays to transition form factors: $\omega/\phi \to \pi^0 \gamma^*$

Towards the π^0 transition form factor

Summary / Outlook

work done in collaboration with <u>M. Hoferichter</u>, S. Leupold, F. Niecknig, D. Sakkas, <u>S. P. Schneider</u>

Testing the Wess–Zumino–Witten chiral anomaly

• controls low-energy processes of odd intrinsic parity

•
$$\pi^0$$
 decay $\pi^0 \to \gamma\gamma$: $F_{\pi^0\gamma\gamma} = \frac{e^2}{4\pi^2 F_{\pi^0\gamma\gamma}}$

 F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011

Testing the Wess–Zumino–Witten chiral anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_{\pi}}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_{\pi}^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

Testing the Wess–Zumino–Witten chiral anomaly

- controls low-energy processes of odd intrinsic parity
- $\pi^0 \operatorname{decay} \pi^0 \to \gamma \gamma$: $F_{\pi^0 \gamma \gamma} = \frac{e^2}{4\pi^2 F_-}$ F_{π} : pion decay constant \longrightarrow measured at 1.5% level PrimEx 2011
- $\gamma \pi \to \pi \pi$ at zero energy: $F_{3\pi} = \frac{e}{4\pi^2 F_-^3} = (9.78 \pm 0.05) \,\text{GeV}^{-3}$ how well can we test this low-energy theorem?

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - chiral perturbation theory for extraction

Serpukhov 1987

Chiral anomaly: Primakoff measurement

- previous analyses based on
 - data in threshold region only
 - chiral perturbation theory for extraction
- Primakoff measurement of whole spectrum COMPASS, work in progress
- idea: use dispersion relations to exploit all data below 1 GeV for anomaly extraction
- effect of ρ resonance included model-independently via $\pi\pi$ P-wave phase shift

figure courtesy of T. Nagel 2009

Serpukhov 1987

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

Warm-up: pion form factor from dispersion relations

• just two particles in final state: form factor; from unitarity:

 $\frac{1}{2i}\operatorname{disc} F_{I}(s) = \operatorname{Im} F_{I}(s) = F_{I}(s) \times \theta(s - 4M_{\pi}^{2}) \times \sin \delta_{I}(s) e^{-i\delta_{I}(s)}$

 \longrightarrow final-state theorem: phase of $F_I(s)$ is just $\delta_I(s)$ Watson 1954

• solution to this homogeneous integral equation known:

$$F_I(s) = P_I(s)\Omega_I(s) , \quad \Omega_I(s) = \exp\left\{\frac{s}{\pi}\int_{4M_\pi^2}^{\infty} ds' \frac{\delta_I(s')}{s'(s'-s)}\right\}$$

 $P_I(s)$ polynomial, $\Omega_I(s)$ Omnès function

Omnès 1958

• constrain polynomial using symmetries / chiral perturbation theory (normalisation/derivatives at s = 0)

- $\gamma \pi \rightarrow \pi \pi$ particularly simple system: odd partial waves \longrightarrow P-wave interactions only (neglecting F- and higher)
- decay amplitude decomposed into single-variable functions

$$\mathcal{M}(s,t,u) = i\epsilon_{\mu\nu\alpha\beta}n^{\mu}p_{\pi^{+}}^{\nu}p_{\pi^{-}}^{\alpha}p_{\pi^{0}}^{\beta}\mathcal{F}(s,t,u)$$
$$\mathcal{F}(s,t,u) = \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$$

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}(s)} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}(s)} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc $\mathcal{F}(s) = 2i \{ \underbrace{\mathcal{F}(s)}_{\mathcal{F}} + \underbrace{\hat{\mathcal{F}}(s)}_{\mathcal{F}} \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$

right-hand cut left-hand cut

Unitarity relation for $\mathcal{F}(s)$:

disc
$$\mathcal{F}(s) = 2i\{\mathcal{F}(s) \} \times \theta(s - 4M_{\pi}^2) \times \sin \delta_1^1(s) e^{-i\delta_1^1(s)}$$

right-hand cut
disc $\boxed{\qquad} = \sqrt{}$

• right-hand cut only $\longrightarrow Omnès problem$

$$\mathcal{F}(s) = P(s) \Omega(s) , \qquad \Omega(s) = \exp\left\{\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\delta_1^1(s')}{s'-s}\right\}$$

 \longrightarrow amplitude given in terms of pion vector form factor

$$\operatorname{disc} \mathcal{F}(s) = 2i \left\{ \underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} + \underbrace{\hat{\mathcal{F}}(s)}_{\text{left-hand cut}} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \, \delta_1^1(s) \, e^{-i\delta_1^1(s)}$$

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \left(1 - z^2 \right) \mathcal{F}(t(s, z))$$
$$\mathcal{F}(s) = \sqrt{2} + \sqrt{2} +$$

$$\operatorname{disc} \mathcal{F}(s) = 2i \left\{ \underbrace{\mathcal{F}(s)}_{\text{right-hand cut}} + \underbrace{\hat{\mathcal{F}}(s)}_{\text{left-hand cut}} \right\} \times \theta(s - 4M_{\pi}^2) \times \sin \, \delta_1^1(s) \, e^{-i\delta_1^1(s)}$$

• inhomogeneities $\hat{\mathcal{F}}(s)$: angular averages over the $\mathcal{F}(t)$, $\mathcal{F}(u)$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$
$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^1 dz \left(1 - z^2 \right) \mathcal{F}\left(t(s, z) \right)$$

 admits crossed-channel scattering between s-, t-, and u-channel (left-hand cuts)

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in $C_2^{(i)}$

$$\mathcal{F}(s) = C_2^{(1)} \mathcal{F}^{(1)}(s) + C_2^{(2)} \mathcal{F}^{(2)}(s)$$

 \longrightarrow basis functions $\mathcal{F}^{(i)}(s)$ calculated independently of $C_2^{(i)}$

Omnès solution for $\gamma\pi ightarrow \pi\pi$

$$\mathcal{F}(s) = \Omega(s) \left\{ \frac{C_2^{(1)}}{3} \left(1 - \dot{\Omega}(0)s \right) + \frac{C_2^{(2)}}{3}s + \frac{s^2}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'^2} \frac{\sin \delta_1^1(s')\hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

• important observation: $\mathcal{F}(s)$ linear in $C_2^{(i)}$

$$\mathcal{F}(s) = C_2^{(1)} \mathcal{F}^{(1)}(s) + C_2^{(2)} \mathcal{F}^{(2)}(s)$$

 \longrightarrow basis functions $\mathcal{F}^{(i)}(s)$ calculated independently of $C_2^{(i)}$

- representation of cross section in terms of two parameters
 - \longrightarrow fit to data, extract

$$F_{3\pi} \simeq C_2 = C_2^{(1)} + C_2^{(2)} M_\pi^2$$

 $\longrightarrow \sigma \propto (C_2)^2$ also in ρ region

• identical quantum numbers to $\gamma\pi \to \pi\pi$

BK@PhiPsi2011

• now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$

• identical quantum numbers to $\gamma\pi \to \pi\pi$

- BK@PhiPsi2011
- now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$
- angular averages:

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{-1}^{1} dz \, (1-z^2) \mathcal{F}\big(t(s,z)\big)$$

- identical quantum numbers to $\gamma \pi \rightarrow \pi \pi$
- now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$
- angular averages:

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_{-}(s)}^{t_{+}(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^{2}\right) \mathcal{F}(t)$$

• complication: analytic continuation in decay mass M_V required • $M_V < 3M_{\pi}$: okay • $t_-(s)$

Re(t)

BK@PhiPsi2011

- identical quantum numbers to $\gamma\pi \rightarrow \pi\pi$
- now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$
- angular averages:

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_{-}(s)}^{t_{+}(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^{2}\right) \mathcal{F}(t)$$

- complication:
 - analytic continuation in decay mass M_V required
- $M_V > 3M_{\pi}$:

path deformation required

- identical quantum numbers to $\gamma \pi \rightarrow \pi \pi$
- now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$
- angular averages:

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_{-}(s)}^{t_{+}(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^{2}\right) \mathcal{F}(t)$$

- complication:
 - analytic continuation in decay mass M_V required
- $M_V > 3M_{\pi}$:

path deformation required

 \rightarrow generates 3-particle cuts

BK@PhiPsi2011

- identical quantum numbers to $\gamma\pi \to \pi\pi$
- now: fix subtraction constant *a* to partial width(s) $\omega/\phi \rightarrow 3\pi$
- angular averages:

$$\hat{\mathcal{F}}(s) = \frac{3}{2} \int_{t_{-}(s)}^{t_{+}(s)} dt \left(\frac{dz}{dt}\right) \left(1 - z(t)^{2}\right) \mathcal{F}(t)$$

- complication:
 - analytic continuation in decay mass M_V required
- $M_V > 3M_{\pi}$:

path deformation required

- \rightarrow generates 3-particle cuts
- fits experimental data on $\phi \rightarrow 3\pi$
- experimental $\omega \rightarrow 3\pi$ Dalitz plots?

Niecknig, BK, Schneider 2012 KLOE, WASA@COSY, CLAS?

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

• dispersion relations link hadronic to radiative decays:

• ω transition form factor related to

pion vector form factor $\times \omega \rightarrow 3\pi$ decay amplitude

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

dispersion relations link hadronic to radiative decays:

Transition form factors $\omega(\phi) ightarrow \pi^0 \ell^+ \ell^-$

dispersion relations link hadronic to radiative decays:

• $f_1(s) = f_1^{\omega \to 3\pi}(s) = \mathcal{F}(s) + \hat{\mathcal{F}}(s)$ P-wave projection of $\mathcal{F}(s, t, u)$

• sum rule for $\omega \to \pi^0 \gamma \longrightarrow$ saturated at 90–95%

$$f_{\omega\pi^{0}}(0) = \frac{1}{12\pi^{2}} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{q_{\pi}^{3}(s')}{s'^{3/2}} F_{\pi}^{V*}(s') f_{1}(s') , \quad \Gamma_{\omega \to \pi^{0}\gamma} \propto |f_{V\pi^{0}}(0)|^{2}$$
Schneider, BK, Niecknig 2012

• comparison to $\omega \to \pi^0 \mu^+ \mu^-$ mysterious; experiments for $\phi \to \pi^0 \ell^+ \ell^-$ highly welcome see Sebastian Schneider's poster on Tuesday

One step further:
$$e^+e^-
ightarrow 3\pi, \; e^+e^-
ightarrow \pi^0\gamma$$

see Sebastian Schneider's poster on Tuesday

• decay amplitude for $\omega/\phi \to 3\pi$: $\mathcal{M}_{\omega/\phi} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s) = a_{\omega/\phi} \Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{ds'}{s'} \frac{\sin \delta_1^1(s') \hat{\mathcal{F}}(s')}{|\Omega(s')|(s'-s)} \right\}$$

 $a_{\omega/\phi}$ adjusted to reproduce total width $\omega/\phi \rightarrow 3\pi$

One step further: $e^+e^-
ightarrow 3\pi, \; e^+e^-
ightarrow \pi^0\gamma$

see Sebastian Schneider's poster on Tuesday

• decay amplitude for $e^+e^- \rightarrow 3\pi$: $\mathcal{M}_{e^+e^-} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a_{e^+e^-}(q^2)\,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin\delta_1^1(s')\hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)} \right\}$$

 $a_{e^+e^-}(q^2)$ adjusted to reproduce spectrum $e^+e^- \rightarrow 3\pi$ contains 3π resonances \rightarrow parameterise One step further: $e^+e^-
ightarrow 3\pi, \; e^+e^-
ightarrow \pi^0\gamma$

see Sebastian Schneider's poster on Tuesday

• decay amplitude for $e^+e^- \rightarrow 3\pi$: $\mathcal{M}_{e^+e^-} \propto \mathcal{F}(s) + \mathcal{F}(t) + \mathcal{F}(u)$

$$\mathcal{F}(s,q^2) = a_{e^+e^-}(q^2)\,\Omega(s) \left\{ 1 + \frac{s}{\pi} \int_{4M_\pi^2}^\infty \frac{ds'}{s'} \frac{\sin\delta_1^1(s')\hat{\mathcal{F}}(s',q^2)}{|\Omega(s')|(s'-s)|} \right\}$$

 $a_{e^+e^-}(q^2)$ adjusted to reproduce spectrum $e^+e^- \rightarrow 3\pi$ contains 3π resonances \longrightarrow parameterise

• fit to $e^+e^- \rightarrow 3\pi$ data \rightarrow prediction for isoscalar $e^+e^- \rightarrow \pi^0\gamma$: $F_{\pi\gamma^*\gamma}(q^2, 0) = F_{vs}(q^2, 0) + F_{vs}(0, q^2)$

 \longrightarrow important for $(g-2)_{\mu}$

 π^0, η, η

Towards a dispersive analysis of $e^+e^- ightarrow \pi^0\gamma$

• combine isoscalar and isovector contribution to $e^+e^- \rightarrow \pi^0 \gamma$

$$F_{\pi\gamma^*\gamma}(q^2,0) = F_{vs}(0,q^2) + F_{vs}(q^2,0)$$

= $\frac{1}{12\pi^2} \int_{4M_{\pi}^2}^{\infty} ds' \frac{q_{\pi}^3(s')}{\sqrt{s'}} \left\{ \frac{f_1^{\gamma^* \to 3\pi}(s',q^2)}{s'} + \frac{f_1^{\gamma\pi \to \pi\pi}(s')}{s' - q^2} \right\} F_{\pi}^{V*}(s')$

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

$\pi^0 ightarrow \gamma^*(q_v^2) \gamma^*(q_s^2)$ transition form factor

Summary / Outlook

Dispersion relations for $\gamma\pi o \pi\pi$

- based on unitarity, analyticity, crossing symmetry
- enable improved extraction of $F_{3\pi}$ from data up to 1 GeV

Vector meson decays $\omega/\phi
ightarrow 3\pi$, $\omega/\phi
ightarrow \pi^0\gamma^*$

- analytic-unitary description of $\phi \rightarrow 3\pi$ Dalitz plot
- dispersion relations predict transition form factors therefrom

Towards π^0 transition form factors

- short-term: combine all input for $e^+e^- \rightarrow \pi^0 \gamma$ Hoferichter, BK, Leupold, Niecknig, Schneider, in progress
- long-term: full description of doubly-virtual π^0 transition form factor, based on dispersion theory
- \rightarrow interrelate as much experimental information as possible to constrain hadron physics in $(g-2)_{\mu}$

Meson transition form factors and $(g-2)_{\mu}$

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in $(g-2)_{\mu}$:

Meson transition form factors and $(g-2)_{\mu}$

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in $(g-2)_{\mu}$:

 \longrightarrow hadronic light-by-light soon dominant uncertainty

 important contribution: pseudoscalar pole terms singly / doubly virtual form factors
 F_{Pγγ*}(q², 0) and F_{Pγ*γ*}(q²₁, q²₂)

Meson transition form factors and $(g-2)_{\mu}$

Czerwinski et al., arXiv:1207.6556 [hep-ph]

• leading and next-to-leading hadronic effects in $(g-2)_{\mu}$:

 \longrightarrow hadronic light-by-light soon dominant uncertainty

- important contribution: pseudoscalar pole terms singly / doubly virtual form factors $F_{P\gamma\gamma^*}(q^2, 0)$ and $F_{P\gamma^*\gamma^*}(q_1^2, q_2^2)$
- for specific virtualities: linked to vector-meson conversion decays

 \longrightarrow e.g. $F_{\pi^0\gamma^*\gamma^*}(q_1^2, M_\omega^2)$ measurable in $\omega \to \pi^0 \ell^+ \ell^-$ etc.

 π^0, η, η'

Numerical results: $\omega ightarrow \pi^0 \mu^+ \mu^-$

- unable to account for steep rise in data (from heavy-ion collisions) NA60 2009, 2011
- more "exclusive" data?!
- $\omega \rightarrow 3\pi$ Dalitz plot?

KLOE, WASA-at-COSY, CLAS?

Numerical results: $\phi ightarrow \pi^0 \ell^+ \ell^-$

- measurement would be extremely helpful: ρ in physical region!
- partial-wave amplitude backed up by experiment

Transition form factor beyond the $\pi\omega$ threshold

• full solution above naive VMD, but still too low

• higher intermediate states (4 π / $\pi\omega$) more important?

Fit to $e^+e^- ightarrow 3\pi$ data

- parametrisation in terms of dispersively reconstructed ω + φ Breit–Wigner propagators → good analytic properties Lomon, Pacetti 2012; Moussallam 2013
- "standard" Breit–Wigner function with energy-dependent width

$$B(q^{2}) = \frac{c_{\omega}}{M_{\omega}^{2} - q^{2} - iM_{\omega}\Gamma_{\omega}(q^{2})} + \frac{c_{\phi}}{M_{\phi}^{2} - q^{2} - iM_{\phi}\Gamma_{\phi}(q^{2})}$$
$$\tilde{B}(q^{2}) = \alpha + \beta q^{2} + \frac{q^{4}}{\pi} \int_{9M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{2}} \frac{\operatorname{Im} BW(s')}{s' - q^{2}} = a_{e^{+}e^{-}}(q^{2})$$

- subtraction constant $\alpha = \tilde{B}(q^2 = 0)$: fixed by $\gamma \to 3\pi$
- c_{ω} , c_{ϕ} , β from fit to data

Fit to $e^+e^- ightarrow 3\pi$ data

Improved Breit–Wigner resonances

Lomon, Pacetti 2012; Moussallam 2013

• "standard" Breit–Wigner function with energy-dependent width

$$B^{\ell}(q^{2}) = \frac{1}{M_{\rm res}^{2} - q^{2} - iM_{\rm res}\Gamma_{\rm res}^{\ell}(q^{2})}$$
$$\Gamma_{\rm res}^{\ell}(q^{2}) = \theta(q^{2} - 4M_{\pi}^{2})\frac{M_{\rm res}}{\sqrt{q^{2}}} \left(\frac{q^{2} - 4M_{\pi}^{2}}{M_{\rm res}^{2} - 4M_{\pi}^{2}}\right)^{\ell}\Gamma_{\rm res}(M_{\rm res}^{2})$$

- ▷ no correct analytic continuation below threshold $q^2 < 4M_\pi^2$
- ▷ wrong phase behaviour for $\ell \ge 1$:

$$\lim_{q^2 \to \infty} \arg B^1(q^2) \approx \pi - \arctan \frac{\Gamma_{\text{res}}}{M_{\text{res}}} \qquad \lim_{q^2 \to \infty} \arg B^{\ell \ge 2}(q^2) = \frac{\pi}{2} \ (!)$$

remedy: reconstruct via dispersion integral

$$\tilde{B}^{\ell}(q^2) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{\operatorname{Im} B^{\ell}(s')ds'}{s' - q^2} \quad \longrightarrow \quad \lim_{s \to \infty} \arg B^{\ell}(q^2) = \pi$$

On the approximation for the 3-pion cut

 \rightarrow isoscalar contribution looks simplistic; why not instead

 \rightarrow contains amplitude $3\pi \rightarrow \gamma\pi$

On the approximation for the 3-pion cut

On the approximation for the 3-pion cut

