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1. Lepton charge nonconservation and mixing 
of leptons with different flavors

• The lepton charge nonconservation ( nonconservation of the lepton 
numbers                       )  leads to the mixing of the electron, muon and 
tau neutrinos, which manifests itself in the spatial oscillations at the 
neutrino beam propagation in vacuum [B. Kayser,  Phys. Lett. B 667,  163  (2008)]. At 
the same time, the lepton-charge non-conserving interaction should also 
weakly mix the ordinary leptons with the same electric charge   
(  e–, μ–, τ– , as well as   e+, μ+, τ+ )  and should be, in particular, the 
cause of the nonzero probabilities of the  μ– decay into the electron and  
γ quantum and the  μ+ decay into the positron and  γ quantum, which are 
forbidden under the lepton charge conservation .  

τμ LLL e   ,  ,



• Let us emphasize that, in the framework of the scheme under 
consideration, the total lepton number is conserved. 

• It is accepted to take the lepton numbers of the electron and 
electron neutrino to be equal to                                , those of the 
negative muon and muon neutrino  – to                                  ,  and 
those of the τ– lepton and  tau neutrino  – to                                 . 
For antiparticles, the respective lepton numbers have the opposite 
sign :                                   for the positron  and electron antineutrino,

for the positive muon and muon antineutrino, 
and                                     for the τ+ lepton  and tau antineutrino . 
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2. Mass matrix and neutrino states with the 
definite masses

• Taking into account the CP invariance  ( T invariance ), the mass 
matrix for the neutrino family should be symmetric and, due to 
hermiticity, real. It has the general structure of the form :

(1)

• The diagonal elements of this mass matrix have the meaning of the 
masses of electron neutrino (                ) , muon neutrino (                )  
and  tau neutrino (                 )  , whereas the nondiagonal elements   

(                                               )  characterize the degree of lepton 
charge nonconservation. {Due to the CPT invariance, the mass matrices for 
neutrinos and antineutrinos should coincide  (                )} .
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• In doing so, the states with the definite lepton charge ( “flavor” )    
are connected with the stationary states                   , being 

related with the definite masses  m1 , m2 , m3,  by the following unitary 
transformation :  

(2)

• Let us note that, due to T invariance , the unitary matrix     is real. This 
means that the inverse matrix        coincides with the transposed 
primary one (               ). Thus, the states with the definite lepton charge 
represent the coherent superpositions of stationary states, and the 
stationary states represent the superpositions of states with the definite 
lepton charge, having the same coefficients : 

(3)

(4) 
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• The elements of the unitary matrix      in  Eqs. (3)  and (4)  are scalar 
products of the neutrino states with the definite lepton charge and 
neutrino stationary states :

(5)   
It is obvious that the neutrino stationary states – as the eigenstates of 
the mass matrix, corresponding to the different masses  m1 , m2 and 
m3 – are mutually orthogonal :  

(6)

in accordance with the unitarity condition, due to which the following 
equality holds:

(7) 
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3.  Neutrino oscillations

• Just the difference of masses of neutrino stationary states is the cause 
of neutrino   oscillations .

• If a neutrino is generated, at a fixed energy E, in the state         with the 
definite lepton charge ( “flavor” ) (       – electron, muon or tau neutrino), 
then, at the finite distance L  from the point of generation, it turns into 
the superposition of the form ( see Eqs. (3), (4) ) :

,    (8)              

where  pi is the momentum of the stationary neutrino       with the 
mass  mi at the energy E .  Since neutrinos are in fact ultrarelativistic
particles, we may write:

.                         (9)

( In relations (8) and (9) , c is the velocity of light in vacuum and     is 
the Planck constant ) .
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Then the amplitude of transition of the electron neutrino into the muon
one at the distance  L from the generation point will have the form :

(10)

Taking into account the unitarity condition, which implies the equality :

,          (11)
the probability of transition of the electron neutrino into the muon one 
at the distance L  from the generation point is as follows :

(12) 
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• In doing so, the arguments of oscillating terms in  Eq. (12) may be 
presented in  the form :

,
where the masses are given in      , the energy – in GeV,  and the 
distance  L – in kilometers. The respective periods of spatial oscillations 
are equal to

.
Let us remark that if at a given distance L  the condition
is satisfied and, meanwhile, we have

,
then formula (12) is simplified :

(13)

since, owing to the unitarity condition for the matrix        ,
.                             (14) 
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• In doing so,

.      (15)

Formula (15) describes, in particular, the decrease of intensity of the 
beam of reactor antineutrino with energy around several MeV at 
comparatively small distances from the reactor on account of the
transition of the electron antineutrino into the muon one, which is 
“sterile” below the threshold of meson production .

Analogously, the probability of transition of the electron neutrino into 
the tau neutrino at the distance L from the point of generation is 
described by Eq. (12) with the replacements:

.
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• Meantime, the probability of the event that the electron neutrino does 
not change its “flavor” at the distance L from the point of generation 
amounts to :

(16)

Here, we have taken into account that, in accordance with the 
unitarity condition,  

.
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• Just as one should expect, the unitarity relation  

ensures the equality    
.

• According to the relations (11), (12) and (16),  the admixtures of muon
and tau neutrinos, averaged over the spatial oscillations  ( over the 
energy spectrum at a given distance L ) , are, respectively, as follows :       

,         (17)

,         (18)
and the average intensity of the beam of electron neutrinos, attenuated 
as a result of spatial oscillations, is proportional to : 

.                     (19)
It can be shown that the absolute minimum of the quantity
is equal to  ⅓ – in accordance with the number of stationary neutrinos
n = 3  .
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4.  Nondiagonal elements of the mass matrix and 
their connection with the differences of neutrino 

masses

• By applying relations (3),  the nondiagonal elements of the mass matrix 
can be expressed through the differences of masses of neutrino 
stationary states and the elements of the unitary matrix        .  Indeed, it 
is easy to see that :  

(20)
where mi is the neutrino mass in the stationary state           ,  as before .
Taking into account the unitarity condition:                        ,
we obtain the following expressions for the mass matrix element :

,            (21)
or                                         .              (22)

Analogous expressions may be obviously written for the mass matrix 
elements          and          .
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• In terms of the mixing angles for the neutrino stationary states, which 
are formally analogous to the Maiani angles introduced for the 
description of mixing of “lower” quarks d, s and b [Kayser,2008; 
Goodman,2008; Okun,1990; Maiani,1976], the matrix      can be presented in the 
form :

(23)       

According to (23), we have :
(24)

As a result, Eq. (21) gives :

(25)
Formula (25), determining the matrix element      , incorporates the values of 
differences of stationary neutrino masses. Meantime, the experimental data on 
neutrino oscillations contain the information only on the differences of squares of 
masses. 
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• If the moduli of differences of mass squares are very small as compared 
with the square of each of the masses ( which seems to be plausible ), 
then the masses of all the three stationary neutrinos may be assumed to 
be approximately equal to each other:

.                               (26)
In this situation, the moduli of all the differences of masses are very 
small as compared with the common neutrino mass        :

.         (27)   
• Within this approximation, the differences of stationary neutrino masses 

are determined according to the formulas { The experimental data on oscillations
[Kayser,2008]  testify to the fact that                                     . This means that the difference of masses of 
the first and second stationary neutrinos is very small as сompared with their distinction from the third 
stationary neutrino, which is itself also relatively small } :

(28)
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5.  States of charged leptons with the 
definite masses

• Taking into account the lepton-charge non-conserving interaction, the mass 
matrix for the family of leptons, including the electron, the negative muon and 
the τ– lepton, has the form being analogous to the mass matrix for the neutrino 
family :

.                          (30) 

The diagonal elements of the mass matrix      are equal to the masses of 
electron (               ,                                      ),  negative muon (                       ,

)  and  τ– lepton  (             ,                         ) ,      
whereas the nondiagonal elements, being responsible for the lepton charge 
nonconservation, are negligibly small as compared with the electron mass   Me
and, all the more, as compared with all the differences of masses    

. Just the same mass matrix corresponds to the 
family of antileptons, incorporating the positron (                           ), the positive 
muon (                               ), and the τ+ lepton  (                                 ) . 
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• Due to T  invariance, the Hermitian matrix      should be symmetric and, hence, 
real :

(31)

• Within the perturbation theory first-order approximation, the stationary states of 
leptons represent the superpositions of states with different lepton charges :

,
,            (32)
.

• The stationary states, denoted by prime, are related with different masses. In 
doing so, these masses practically coincide with the masses of leptons :

(33)

and the coefficients of mixing of states with different lepton charges are 
expressed through the ratios of nondiagonal elements of the mass matrix to the 
differences of masses of respective leptons.
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Indeed, neglecting the second-order terms over the lepton-charge non-
conserving interaction, we find : 

;

;                   (34)    
.

Let us note that, taking into account the small values of mixing 
coefficients, relations (34)  follow also from the expressions being 
analogous to Eqs. (21) and (22)  for neutrinos .
In Eqs. (32), the symbols        and       denote the  “muonic” ( Lμ = 1 )  
and “tau-leptonic” ( Lτ = 1 ) states included into the stationary 
superposition with the electron mass Me ,  the symbols          and
denote the  “electronic” ( Le = 1) and  “tau-leptonic” ( Lτ = 1 )  states
included into the stationary superposition with the muon mass   Mμ ,  
and the symbols         and         denote the  “electronic”  ( Le = 1 )  and  
“muonic” ( Lμ = 1 )  states included into the stationary superposition with 
the τ-lepton mass  Mτ . 
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6.    Coefficient of mixing of the states
with the lepton charges  Le = 1  and Lμ = 1 
and probability of the decay  μ– → e– + γ

• Let us estimate the probability of the radiative decay   μ– → e– +  γ , 
being  forbidden under the lepton charge conservation, assuming that 
this decay occurs on account of  “admixture” of the state      with the 
electronic lepton number  Le = 1 and the muon mass to the negative 
muon . Then the probability of decay  μ– → e– +  γ per unit time will be 
as follows : 

,             (35)
• where        is the mixing coefficient included in the second formula in 

Eqs. (32) .
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• Meantime, the differential probability of decay of the “heavy electron” 
with mass Mμ into the ordinary electron with momentum  

(36)

(     is the unit vector along the momentum ) and  the  γ quantum with 
energy  

(37) 
per unit time  can be calculated according to the standard formula of 
quantum electrodynamics  [Berestetsky, Lifshitz, Pitaevsky, 1983] :

,     (38)

where          is the fine structure constant,        is the frequency of  γ
quantum,  χ is the vector of polarization of  γ quantum,      is the Dirac 
bispinor describing the ordinary electron with mass  Me and momentum 
p , α is the four-row Dirac matrix (                [Berestetsky, Lifshitz, Pitaevsky, 
1983] ) ,  ϕ0 is the Dirac bispinor corresponding to the resting “heavy 
electron”  with mass  Mμ ,                        .
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• Passing to the two-row Pauli matrices      ,  we may write :
,   (39)  

where  u0 and  v0 are the two-row spinors, normalized by unity, and  
.                 (40)

• In doing so, we have :
.                 (41)

Taking into account that the final electron is ultrarelativistic
, we obtain the following expression – after averaging 

the differential probability of emission over the polarizations of the 
“heavy electron” and summing over the polarizations of the γ quantum 
and final ordinary electron :

(42)
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• The total probability of radiative decay of the “heavy electron” per unit 
time amounts to : 

.                 (43)
Taking into account the numerical values 

(                           ),

the probability of radiative decay of the electronic state with mass Mμ

(per 1 sec.) equals
.         (44)  

According to relations (35)  and  (38) ,

(45) 
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• As follows from the experimental data  [ Review of Particle Physics, B667, 
2008,  p. 34, 36 ] ,

,                     (46)         

where                                      is the probability of decay of the negative 
muon into the electron, electron antineutrino and muon neutrino  per 
unit time, coinciding practically with the inverse lifetime of the muon :

.            

Thus, in accordance with the experimental restriction (46), we obtain :
.             (47)

Taking into account Eqs. (35), (43) and (45), this means that:   

(48) 
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7.  Hypothesis on the equality of nondiagonal
elements of the mass matrices for neutrinos and 

charged leptons  and the estimate of the lower bound 
of neutrino mass

• Let us suppose that the mixing of ordinary leptons  ( e , μ,  τ )  and the 
mixing of neutrinos  (                    )  are conditioned by the same lepton-
charge non-conserving interaction. Under this natural assumption, the 
non-diagonal elements of the three-row mass matrix for the lepton 
family should coincide with those of the three-row mass matrix for 
neutrinos :

.                   (49)         
Thus, we will assume that the matrix element        , included into formula 
(45). may be replaced by the matrix element       corresponding to the 
neutrino family. 
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• Then, taking into account Eq. (29)   and inequalities  (48),   we obtain 
the relation for estimating the lower bound of the neutrino mass : 

(50)  
• According to the experimental data on neutrino oscillations [ Review of  

Particle Physics, B667, 2008,  p. 34, 36 ] ,
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• Assuming, respectively, that 

we find :
.                   (51)

• This value for the lower bound of neutrino mass is in good 
agreement with the upper limit of antineutrino mass determined in 
the works by Lobashev et al. [ Phys. Lett. B460, 227, 1999 ] 

(                     )
and Kraus et al. [ Eur. Phys. J., C40, 447, 2005 ]

(                    )  
within the study of electron spectrum in the tritium β-decay ( see also 
[ Review of  Particle Physics, B667, 2008, p. 34, 36 ] ) .
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8.  Concluding remarks

• Let us emphasize that our estimate for the lower bound of neutrino 
mass       is based on the experimental data on neutrino oscillations, 
on the experimental restriction for the probability of decay 
μ– → e– +  γ per unit time and on the assumption that the 
nondiagonal element of the neutrino mass matrix     , characterizing 
the mixing of muon and electron neutrino on account of the lepton 
charge nonconservation, coincides with the nondiagonal element of 
the mass matrix for ordinary leptons         , characterizing the mixing 
of negative muon and electron  – which seems natural from our 
point of view .

• Meantime, if                          , then the value for the lower bound of 
neutrino mass will change as compared with the magnitude obtained 
above . In this case,                               ,  where 
is the ratio of nondiagonal elements of the mass matrices for leptons 
and neutrinos  .
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• If,  in  further  experiments,  the  probability  of  decay    μ– → e– +  γ
per 1 sec  will be determined  or  the upper limit of this probability will  

be reduced, this will testify to the fact that the parameter  | η | < 1  –
since, otherwise, we would get a contradiction with the experimental 
data on the upper bound of neutrino mass.

• Under the choice of another set of parameters  ( taking into account the 
latest data on nonzero neutrino mixing angle  θ13 ) :

we would obtain the estimate
,

which may be in accordance with the presently known upper limits for 
the probability of decay   μ– → e– +  γ per 1 sec  and neutrino mass 
only at the ratios of moduli of matrix elements

.
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