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1. Lepton charge nonconservation and mixing

of IeE‘rons with different flavors

The lepton charge nonconservation ( nonconservation of the lepton
numbers L., L,, L. ) leads to the mixing of the electron, muon and
tau neutrinos, which manifests itself in the spatial oscillations at the
neutrino beam propagation in vacuum [B. Kayser, Phys. Lett. B 667, 163 (2008)]. At
the same time, the lepton-charge non-conserving interaction should also
weakly mix the ordinary leptons with the same electric charge
( e,u,tv,aswellas e*, u*, t* ) and should be, in particular, the
cause of the nonzero probabilities of the p~ decay into the electron and
v quantum and the p* decay into the positron and y quantum, which are
forbidden under the lepton charge conservation .



Let us emphasize that, in the framework of the scheme under
consideration, the total lepton number L=L.+L +L, Isconserved.

It is accepted to take the lepton numbers of the electron and
electron neutrino to be equalto L, =+1,L,=0,L,=0 , those of the
negative muon and muon neutrino — to L. =0, L,=+1, L. =0 | and
those of the v~ lepton and tau neutrino — to L. =0,L,=0, L =+1

For antiparticles, the respective lepton numbers have the opposite
sign: L. =-1,L,=0,L =0 forthe positron and electron antineutrino,

L.=0,L,=-1, L. =0  for the positive muon and muon antineutrino,
and L,=0,L,=0,L =-1 forthe t* lepton and tau antineutrino .



2. Mass matrix and neutrino states with the
definite masses

« Taking into account the CP invariance ( T invariance ), the mass
matrix for the neutrino family should be symmetric and, due to
hermiticity, real. It has the general structure of the form :

(m ms) m{ )

(V) _ (v) (v) (v)
m™ = |mg’ my mg;

(mY mf) e )

 The diagonal elements of this mass matrix have the meaning of the

masses of electron neutrino (m{’ = m{ ), muon neutrino (m{)=m)
and tau neutrino (Mm% = m )  whereas the nondiagonal elements
( m=m, m{=my, m»=m{ ) characterize the degree of lepton

charge nonconservation. {Due to the CPT invariance, the mass matrices for
neutrinos and antineutrinos should coincide (A®™ =/m™ )} .



In doing so, the states with the definite lepton charge ( “flavor” )
lve)s [v), [ve) are connected with the stationary states [v), [v,), |v3) , being
related with the definite masses m, , m, , m;, by the following unitary

transformation : 1v,) lv,)
vy | =U [vﬁ} (2)
|v.) |va)

Let us note that, due to T invariance , the unitary matrix U is real. This
means that the inverse matrix (U)? coincides with the transposed
primary one ((U)}= U, ). Thus, the states with the definite lepton charge
represent the coherent superpositions of stationary states, and the
stationary states represent the superpositions of states with the definite
lepton charge, having the same coefficients :

3 3 3
[Ve) =2 Ui Vi) V) =2Uulvi), [vo)=2Us;lvi) ;
i—L i1 i—1 (3)

|Vi>:Uei|Ve>+Upi|Vu>+Uri|Vt> : (4)




® The elements of the unitary matrix U in Egs. (3) and (4) are scalar

products of the neutrino states with the definite lepton charge and
neutrino stationary states :

Ui:ei’Upi:pi’Uri:ri
ei= Vel Vi) vl vi) (vel vi) (5)

It is obvious that the neutrino stationary states — as the eigenstates of
the mass matrix, corresponding to the different masses m, , m, and
m, — are mutually orthogonal :

(6)

(il vp) = (vl vg) = (vl vy) =0,

in accordance with the unitarity condition, due to which the following
equality holds:

Wil vy = Uy Uek+Uui Upk+ U Uy=28, 1Lk=123 . (7)



3. Neutrino oscillations

« Just the difference of masses of neutrino stationary states is the cause
of neutrino oscillations .

- If a neutrino is generated, at a fixed energy E, in the state |[v) with the
definite lepton charge ( “flavor” ) ( |v,) — electron, muon or tau neutrino),
then, at the finite distance L from the point of generation, it turns into
the superposition of the form ( see Egs. (3), (4) ) :

3 i Pl
[vidL =2 (Ui Ug [ve) +UUlvy) U UG v ) e £

i=1

, (8)

where p; is the momentum of the stationary neutrino |v,) with the
mass m. at the energy E . Since neutrinos are in fact ultrarelativistic
particles, we may write:

Pi=—-— i : (9)

( In relations (8) and (9) , ¢ is the velocity of light in vacuum and 7 is
the Planck constant ) .



Then the amplitude of transition of the electron neutrino into the muon
one at the distance L from the generation point will have the form :

= mZciL
A(lve) > lv)) =e ™ [Ueluplexp(_i 21hE ] +

2.3 2 3 (10)
+ U, U, exp [—i 22;ELJ+ Ues U, exp(—i HZ]ShCEL] ] :
Taking into account the unitarity condition, which implies the equality :

[Zueium} :Zugu2 + ZZZUe.UerkU A1)

i<k ’

the probability of transition of the electron neutrino into the muon one
at the distance L from the generation point is as follows :

W(lve) = v = [A(lve)y = [v)) |P=

2 2 3
m- —m;)c°L
E Uel MI+2§ E Ue,UerkU cos(( I2h||(5) J:

i<k

5[ (m2=m2)c3L o (mZ—m2)ciL
=—4Ue1Uu1Ue2U“zSIn2[ 14h2E —4U4 U, Uy U 5 sin’ 14h35 =

(12)

5[ (mZ—m?)c’L
—4uezuuzueguu3sm2( 24h3f£




In doing so, the arguments of oscillating terms in Eq. (12) may be
presented in the form : 1.27 (m? —m?)
E

L

v
where the masses are given in i_z , the energy — in GeV, and the
distance L —in kilometers. The respective periods of spatial oscillations

are equal to .
q 0= 2TE  _494 E  km
1.27 (m" —myg) m’ —my
: : : » |m{ —mJ |c’L
Let us remark that if at a given distance L the condition T << 1

Is satisfied and, meanwhile, we have
Im{ —mg [c’L _ |m; -m|c’L ]
ARE ARE ’

then formula (12) is simplified :
W(lve) > lvi)) =—4(UgU 1 +U, U p) U U Sinz[

2 2y .3
= 4UZ U, sinz[(ml m;)C L}

(mf-m3)cL) _
AME

(13)

4hE

since, owing to the unitarity condition for the matrix U
Uy Uy +Ug U, =-Ug,U ;. (14)



In doing so,

2 2 3
W(lve>+|ve>)L=1_4u§3u53sin2[<m1;;"sE>CLj . (15)

Formula (15) describes, in particular, the decrease of intensity of the
beam of reactor antineutrino with energy around several MeV at
comparatively small distances from the reactor on account of the
transition of the electron antineutrino into the muon one, which is
“sterile” below the threshold of meson production .

Analogously, the probability of transition of the electron neutrino into
the tau neutrino at the distance L from the point of generation is
described by Eq. (12) with the replacements:

Uu1—> U, , UMZ_)UTZ’ Us;—> U,

n3



Meantime, the probability of the event that the electron neutrino does
not change its “flavor” at the distance L from the point of generation
amounts to :

((m2 —m2) 3L
W(|Ve>_) |Ve>)|_ =ZU;+ZZZU;UGZKCOS\( |2th) )=
i i<k k

( (2 _ m2) 31 )
—4u2 U sin? | M=Ms)CL )
| 4nE

(mf —m5) c’L
4nE

=1-4U;U; sinZL
(16)

4hE

2 2 3
—4U% UZ sin? ((mz M;) ¢ Lj

Here, we have taken into account that, in accordance with the
unitarity condition,

2] -



Just as one should expect, the unitarity relation
Ug Ug +U U +U U =0y
ensures the equality
W(lve) > [ved) + W(lve) > [v)) + W(lve) > [v)) =1

According to the relations (11), (12) and (16), the admixtures of muon
and tau neutrinos, averaged over the spatial oscillations ( over the
energy spectrum at a given distance L ), are, respectively, as follows :

W(|v,)—> |v“>)=u§1u§1+ u§2U52+ Uezguj3 : (17)

W(ve) = [v,))=UZU% + U5 U% + UL UZ (18)

and the average intensity of the beam of electron neutrinos, attenuated
as a result of spatial oscillations, is proportional to :

W([ve) = [ve)) = Ug + Uy + Ugs . (19)

It can be shown that the absolute minimum of the quantity W(|v,)— |v,))

is equal to s — in accordance with the number of stationary neutrinos
n=3 .
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their connection with the differences of neutrino
masses

By applying relations (3), the nondiagonal elements of the mass matrix
can be expressed through the differences of masses of neutrino
stationary states and the elements of the unitary matrix u . Indeed, it
is easy to see that : ) 3

m{Y = (v A v,y =Y UgUm, mE =Cv [ [v) =D U ugm;,

3
m( = (v, [mY v, =zUui U, m (20)

i=1

where m; is the neutrino mass in the stationary state |v;) , as before .
Taking into account the unitarity condition: 2 UsU,;=0

we obtain the following expressions for the mass matrix element :

me) =Ug, U g(m —m,) + Ugg U 5(my—m,) , (21)
or | m{)=Ug,U,(my—my) + UgU s(my—my) _ (22)

Analogous expressions may be obviously written for the mass matrix
elements m{Y and m{’.




In terms of the mixing angles for the neutrino stationary states, which
are formally analogous to the Maiani angles introduced for the
description of mixing of “lower” quarks d, s and b [Kayser,2008;
Goodman,2008; Okun,1990; Maiani,1976], the matrix U can be presented in the

form : 1 0 0 ) (cos@, 0 sin@, ) ( cosO, sind, 0 )

U=| 0 cosB, sinBy |[-| O 1 0 |-|-sin6,cos6, 0

(23)

( 0—sinBycos0, ) \—-sinB;0 cosB;) | O 0 1)

According to (23), we have :
Ug =€080;,€050,;3, U, =-c080;,C050, —C0S0,,SiN0;,SIN0,5Sin0;, (24)

U, =sin6,,, U, =5In0,;C050,; .

As a result, Eq. (21) gives :

mgY) = % [ (sin 26, COS 0,;C0S B,; + C0S” B, SiN B,38iN 20, ) (M, —m,) +

+ Sin 20,58IN 0,5 (Mg —m,) ] .

(25)
)

Formula (25), determining the matrix element mg,’ , incorporates the values of
differences of stationary neutrino masses. Meantime, the experimental data on
neutrino oscillations contain the information only on the differences of squares of
masses.



If the moduli of differences of mass squares are very small as compared
with the square of each of the masses ( which seems to be plausible ),
then the masses of all the three stationary neutrinos may be assumed to
be approximately equal to each other:

m 2m xm{ xm™ . (26)
In this situation, the moduli of all the differences of masses are very
small as compared with the common neutrino mass m":

Im—m,| << m™, |m,—m,| << m" : (27)
Within this approximation, the differences of stationary neutrino masses

are determined according to the formulas { The experimental data on oscillations

[Kayser,2008] testify to the fact that |m; —m¢ | << |[m; —m3 | This means that the difference of masses of
the first and second stationary neutrinos is very small as compared with their distinction from the third
stationary neutrino, which is itself also relatively small } :

2 2 2 2
m - —m m,; —m

Taking into account relations (28), we may rewrite Eq. (25) in the form :

v) _

" —rrll(v) [ (in 20,,C0S0,5C0S 0,5 +COS” 0;,SiN 0,35iN 20,5 ) (M5 —1M;) +

29
+ 5iN20,,5iN 0, (M2 —m5) ] )




5. States of charged leptons with the
definite masses

Taking into account the lepton-charge non-conserving interaction, the mass
matrix for the family of leptons, including the electron, the negative muon and
the v~ lepton, has the form being analogous to the mass matrix for the neutrino

family : M. M. M

ee ey et
M= M, M, M, - (30)
Mre Mm Mrr

The diagonal elements of the mass matrix M are equal to the masses of
electron (Mee =M, Le=+1, L, =0, L. =0 ) negative muon ( M, =M,

L.=0, L, =+1, L, =0 ) and t© lepton ( M_=M_ ,L,=0, L, =0, L.=+1),
whereas the nondiagonal elements, being responsible for the lepton charge
nonconservation, are negligibly small as compared with the electron mass M,
and, all the more, as compared with all the differences of masses

(M,-M.), (M. -M.), (M. =M,) | Just the same mass matrix corresponds to the
family of antileptons, incorporating the positron (L, =-1, L, =0, L, =0), the positive
muon (L, =0, L,=-1, L =0 ), and the t* lepton ( L,=0,L,=0,L =-1).



Due to T invariance, the Hermitian matrix M should be symmetric and, hence,

real :

My, =M, ImM,=0; M,=M,, ImM,=0;

M,.=M,, ImM_ =0

(31)

Within the perturbation theory first-order approximation, the stationary states of
leptons represent the superpositions of states with different lepton charges :

[e) =€) +e,e [1W)e +E [T)e
|n) =lw) +eg, l€), +e,1T),

[T =) +ec [€). +e In),

: (32)

The stationary states, denoted by prime, are related with different masses. In
doing so, these masses practically coincide with the masses of leptons :

My =M., M, =M, M,=M|,

(33)

and the coefficients of mixing of states with different lepton charges are
expressed through the ratios of nondiagonal elements of the mass matrix to the

differences of masses of respective leptons.



Indeed, neglecting the second-order terms over the lepton-charge non-

conserving interaction, we find :

M

M

ep

et

e -
et T€ !
Mr_Me

pt

e =
ut T !
M. -M,

lge, | << 1

0, | << 1

le,. | <<'1

; (34)

Let us note that, taking into account the small values of mixing
coefficients, relations (34) follow also from the expressions being
analogous to Eqgs. (21) and (22) for neutrinos .

In Egs. (32), the symbols |w). and |t), denote the “muonic” (L, = 1)
and “tau-leptonic™ ( L. = 1 ) states included into the stationary

1

superposition with the electron mass M, , the symbols |e)M and [1),
denote the “electronic” ( L, = 1) and “tau-leptonic® ( L. = 1 ) states

T

included into the stationary superposition with the muon mass M,
and the symbols [e), and [n). denote the “electronic” (L, =1) and
‘muonic” (L, = 1) states included into the stationary superposition with

the t-lepton mass M. .
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with the lepton charges L, =1 and [, = 1

........and probability of the decay p —> e +y

Let us estimate the probability of the radiative decay p — e + vy,

being forbidden under the lepton charge conservation, assuming that
this decay occurs on account of “admixture” of the state |€), with the
electronic lepton number L, = 1 and the muon mass to the negative
muon . Then the probability of decay p~— e~ + y per unit time will be
as follows :

W(p™ = e +7) = |e, FW(|e), > e +7)

, (39)

where ¢€q is the mixing coefficient included in the second formula in
Egs. (32) .




Meantime, the differential probability of decay of the “heavy electron”
with mass M, into the ordinary electron with momentum
M2 _M?2
T oM,

(36)

cn

( N is the unit vector along the momentum ) and the y quantum with
energy M:—-Mg

eC2

E N

i 2M, (37)
per unit time can be calculated according to the standard formula of
gquantum electrodynamics [Berestetsky, Lifshitz, Pitaevsky, 1983] :

_ e’ ® . , 38
dW(ley, —> e +Y)=%EK | X W, A ? dQ, (38)
e’ 1 E, .
where h—c 137 'S the fine structure constant, ®=" is the frequency of y

quantum, y is the vector of polarization of y quantum, ¥V is the Dirac

bispinor describing the ordinary electron with mass M, and momentum
p , a is the four-row Dirac matrix ( = 0 (‘)’ [Berestetsky, Lifshitz, Pitaevsky,

o

1983] ) , @, Iis the Dirac bispinor corresponding to the resting “heavy

” - E
electron” withmass M, , K =1- v L.

w C




« Passing to the two-row Pauli matrices ¢ , we may write :

_ 0 E,+M,c?)7? (Vo ) (39)
Vp = (Gp)uo2 2Ee ! Po = 0
E.+M,c
where u, and v, are the two-row spinors, normalized by unity, and
MZ+MZ , . 40
Ee=(|p|2c2+M(_’,zc“)%=Mucz—Eyzgc2 (40)
2M,
* In doing so, we have :
A 7
+ + (xo)(op)c E, +M,c° : 41
iencsiaon (o)t e

Taking int<2) account that the final electron is ultrarelativistic
(E,~E,~ M;C , K z% ), we obtain the following expression — after averaging
the differential probability of emission over the polarizations of the
“heavy electron” and summing over the polarizations of the y quantum

and final ordinary electron :

o |1 fvianga a1 1 e M
o Eter:(csx)(csn)(csn)(csx) Sd0,= = do

dw(|e), > e +vy)= _e2 0
H T h¢ h
(42)

a2
hc



« The total probability of radiative decay of the “heavy electron” per unit
time amounts to :

2 2
e |\/|HC

2nc  h | . (43)

Taking into account the numerical values

e 1
(M c?=1056 MeV, = =_—
a hc 137

W(le), > e +y)=

the probability of radiative decay of the electronic state with mass M,
(per 1 sec.) equals

105.6-10° -1.6-10712 (44)

2.1.054-107%".137

According to relations (35) and (38),

W(ley, > e +v)= =0.583-10%" sec™

W(p > e +y) =W(p" > e +7y)=

) Meu 2 62 MMCZ Mei ez 2 45
(M,-M, ) 2rc k |2M, hc B | (49)

(]

=




* As follows from the experimental data [ Review of Particle Physics, B667,
2008, p.34,36],

W(p™ = e +7) <1.2:100" W(p™ > e +V,+v,) (46)

where  w(u — e +v, +v,) is the probability of decay of the negative
muon into the electron, electron antineutrino and muon neutrino per
unit time, coinciding practically with the inverse lifetime of the muon :

W(p™ > e +V,+v,) =L 0455.10° sec™
T
9]
Thus, in accordance with the experimental restriction (46), we obtain :

47
W(p~ = e +7y) < 0.546-10" sec™’ 47)

Taking into account Egs. (35), (43) and (45), this means that:
eV?

C4

|, I° < 0.936-107%°, [M,, [ < 1.032:107%

5 eV
M, < 1.016-10 =z (48)




’. HypofHesns on ‘rge equaln‘y o! nonalagonal

elements of the mass matrices for neutrinos and
charged leptons and the estimate of the lower bound

I

« Let us suppose that the mixing of ordinary leptons (e, u, t) and the
mixing of neutrinos ( v,, v,, v. ) are conditioned by the same lepton-
charge non-conserving interaction. Under this natural assumption, the
non-diagonal elements of the three-row mass matrix for the lepton
family should coincide with those of the three-row mass matrix for
neutrinos :

— — ) —m
MEu o mé:t)’ Mer o mE(BZ ! Mm o mu::} . (49)

Thus, we will assume that the matrix element M, , included into formula
(45). may be replaced by the matrix element m{; corresponding to the
neutrino family.



« Then, taking into account Eq. (29) and inequalities (48), we obtain
the relation for estimating the lower bound of the neutrino mass :

Y |m&) | =—=— | (sin 26,,C0S 0,5 COS B;5 + COS B, Sin B,,5iN 20,5 ) (M3 —m7) +

e | = ()

+ 8in 20,55in 0,, (M, —m?) | < 1.016-107° %
c

(50)

 According to the experimental data on neutrino oscillations [ Review of
Particle Physics, B667, 2008, p. 34, 36 ],

_ +0.08 _— i
sin“26,, =0.86_004 , SIN“20,,>0.92, sin“20,;<0.19

2 2
|m; —m/|=(8.0£0.3)-10™ eci4 . |mi—mJ|=(1.9+3)-107° E‘CL4




« Assuming, respectively, that
sin“20,, =0.86 (0, =34°) , sin“20,,=0.92 (0,,=236.8°), 0,,=0°,

5 eV’
|m22—m12|=810 > C—4

we find :

0.927-0.8-8 eV
m" > = 1.46 ~— _ 1
4.1.016 c? (51)

. This value for the lower bound of neutrino mass is in good
agreement with the upper limit of antineutrino mass determined in

the works by Lobashev et al. [ Phys. Lett. B460, 227, 1999 ]

( mV<23 i—\z/ )
and Kraus et al. [ Eur. Phys. J., C40, 447, 2005 ]
(MW <25 i_\z/ )

within the study of electron spectrum in the tritium B-decay ( see also
[ Review of Particle Physics, B667, 2008, p. 34, 36 ] ) .



8. Concluding remarks

 Let us emphasize that our estimate for the lower bound of neutrino
mass m"™ is based on the experimental data on neutrino oscillations,
on the experimental restriction for the probability of decay

uw — e+ vy per unit time and on the assumption that the
nondiagonal element of the neutrino mass matrix m$,, characterizing
the mixing of muon and electron neutrino on account of the lepton
charge nonconservation, coincides with the nondiagonal element of

the mass matrix for ordinary leptons M., , characterizing the mixing

of negative muon and electron — which seems natural from our
point of view .
e Meantime, if M. |=|m’| ,then the value for the lower bound of

neutrino mass will change as compared with the magnitude obtained

- M
above . In this case, |m™ > 1.46 |n 5 V|, where 1y = %
m.

is the ratio of nondiagonal elements of the mass matrices for leptons
and neutrinos .




If, in further experiments, the probability of decay pu— e + vy
per 1 sec will be determined or the upper limit of this probability will
be reduced, this will testify to the fact that the parameter | n | <1 -
since, otherwise, we would get a contradiction with the experimental
data on the upper bound of neutrino mass.

Under the choice of another set of parameters ( taking into account the
latest data on nonzero neutrino mixing angle 6,; ):

r eV2

ImZ—-m;/| =8 -10" , sin“20,,= 0.86 (0,=34°), Im{-mZ|=3-10

sin“20,,= 0.095 (0,,= 9°), sin®20,,= 0.92 (0,,= 36.8°),
we would obtain the estimate

m¥s (12.1 + 151)|n|ev ,

which may be in accordance with the presently known upper limits for
the probability of decay p~— e~ + y per 1 sec and neutrino mass
only at the ratios of moduli of matrix elements

=|n | <~ 1071

(V)
Mey,
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