Hadronic Vacuum Polarisation in g-2 and α_{QED}

Thomas Teubner

- Introduction/Motivation
- HVP in g-2. Old `puzzles'
- Recent evaluations. New data
- VP-routines. $\Delta \alpha$ at low and high energies
- Future improvements
- Conclusions

Motivation: g-2, a sign for `new' physics?! SUSY?

- Needs μ >0, `light' SUSY-scale Λ and/or large tan β to explain 260 x 10⁻¹¹
- This is already `excluded' by LHC searches in the simplest SUSY scenarios (like CMSSM); causes large χ^2 in simultaneous SUSY-fits with LHC data and g-2
- However note: SUSY does not have to be minimal (w.r.t. Higgs), could have large mass splittings (with lighter sleptons), or corrections (to g-2 and Higgs mass) different from simple models, or not be there at all

- g-2 constrains params, distinguishes between NP models `degenerate' for LHC

Motivation: Precision g-2 constrains SUSY

Miller, de Rafael, Roberts and Stöckinger, Ann. Rev. Nucl. Part. Sci. 62 (2012) 237

Guidice, Paradisi, Strumia JHEP 1210, 186

g-2: SM prediction

$$a_{\mu} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadronic}} + a_{\mu}^{\text{NP?}}$$

see talks by M Knecht, M Steinhauser

- QED: Kinoshita et al. 2012: 5-loop completed (12672 diagrams) 🗸
- EW: 2-loop (and Higgs mass now known, see talk by D Stoeckinger) ✓
- Hadronic: the limiting factor of the SM prediction X

L-by-L: - so far use of model calculations, form-factor data (KLOE-2) will help improving (see talks in yy session, talk by A Radzhabov, poster by A Nyffeler)

- for the future: lattice QCD predictions (first results encouraging)
- several groups: USQCD, UKQCD, ETMC, ... much increased effort
- HVP: most precise prediction by using e⁺e⁻ hadronic cross section data (this talk)
 alternative: lattice QCD, see talk by M Golterman

g-2: SM prediction

- Several groups have produced hadronic compilations over the years.
- Here: Hagiwara+Liao+Martin+Nomura+T
- No new `global' compilations; more precise data expected for near future
- At present the Hadronic Vacuum Polarisation dominates the SM error

QED contribution 11	658 471.808 (0.015) ×10 ⁻¹⁰	Kinoshita & Nio, Aoyama et al			
EW contribution	15.4 (0.2) ×10 ⁻¹⁰	Czarnecki et al			
Hadronic contribution					
LO hadronic	694.9 (4.3) ×10 ⁻¹⁰	HLMNT11			
NLO hadronic	-9.8 (0.1) ×10 ⁻¹⁰	HLMNT11			
light-by-light	10.5 (2.6) ×10 ⁻¹⁰	Prades, de Rafael & Vainshtein			
Theory TOTAL 11 6	59 182.8 (4.9) ×10 ⁻¹⁰				
Experiment 11 6	59 208.9 (6.3) ×10 ⁻¹⁰	world avg			
Exp — Theory	26.1 (8.0) ×10 ⁻¹⁰	3.3 σ discrepancy			

(Numbers taken from HLMNT11, arXiv:1105.3149)

g-2, hadronic VP, essentials

Use of data compilation for HVP:

pQCD not useful. Use the dispersion relation and the optical theorem.

$$a_{\mu}^{\text{had,LO}} = \frac{m_{\mu}^2}{12\pi^3} \int_{s_{\text{th}}}^{\infty} ds \ \frac{1}{s} \hat{K}(s) \sigma_{\text{had}}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$ How to get the most precise σ^{0}_{had} ? $e^{+}e^{-}$ data:

- Low energies: sum ~ 25 exclusive channels
- Vs = 1.4 2 GeV: sum exclusive channels, use iso-spin relations for missing channels, old inclusive data disfavoured, chance for new incl. measurements?!
- Above ~1.8 GeV: can start to use pQCD (away from flavour thresholds), supplemented by narrow resonances (J/Ψ, Y)
- Challenge of data combination (locally in Vs): from many experiments, in different energy bins, errors from different sources, correlations; sometimes inconsistencies/bias
- σ_{had}^{0} means `bare' σ , but WITH FSR: RadCors [HLMNT: $\delta_{\mu}^{had, RadCor VP+FSR} = 2 \times 10^{-10} !$]
- traditional direct `scan' (tunable e⁺e⁻ beams)
 vs `Radiative Return' [+ τ spectral functions]

Status of data combination in the $\pi^+\pi^-$ channel

Radiative Return $\pi\pi(\gamma)$ data [KLOE 08/10 and BaBar 09] compared to combination of all

- → Radiative Return (at fixed e⁺e⁻ energy) a powerful method, complementary to direct energy scan
- → Differences in shape and BaBar high at medium and higher energies
- → limited gain in accuracy due to 'tension'; pull-up (mainly from BaBar)

Normalised difference of cross sections [HLMNT '11]

- Comb. of all data on same footing, before integration (purple band): still good $\chi^2_{\rm min}/{
 m d.o.f.} \sim 1.5$ of fit
- $a_{\mu}^{2\pi}(0.32 2 \text{ GeV}) = (504.2 \pm 3.0) \cdot 10^{-10}, \ a_{\mu}^{2\pi,\text{w/outRad. Ret.}} = (498.7 \pm 3.3) \cdot 10^{-10}$ \rightarrow Pull-up of a_{μ} from Rad. Ret. by ~ 5.5 ; and: comp. w. DHMZ: Their $a_{\mu}^{2\pi}$ is higher by about 2.1 units.
- Clarification/improvement with more, possibly even more precise data (from both scan and ISR) needed!

Status of the data combination in the $\pi^+\pi^-$ channel

A different way to look at it: Rad. Ret. data compared to 2π fit w/out them

New KLOE12 data will add to this tension, see below and A Palladino

Another `puzzle': Use of tau spectral function data?

- Use CVC (iso-spin symmetry) to connect $\tau^- \to \pi^0 \pi^- \nu_{\tau}$ spectral functions to $e^+e^- \to \omega, \rho \to \pi^+\pi^-$ but have to apply iso-spin corrections
- Early calculations by Alemany, Davier, Hoecker: use of τ data complementing e⁺e⁻ data originally resulted in an improvement w.r.t. use of e⁺e⁻ data alone; discrepancy smaller with tau data; later increased tension between e⁺e⁻ and τ
- Recent compilation by Davier et al (Fig. from PRD86, 032013):

- They found discrepancy gone but τ data improved e⁺e⁻ analysis only marginally, however BaBar π⁺π⁻ data not used
- Analyses by Benayoun et al: combined fit of e^+e^- and τ based on Hidden Local Symmetry (HLS) (see talk by M Benayoun): no big tension betw. e^+e^- and τ but for BaBar e^+e^- , increased Δa_{μ} : of ~ 4.5 σ

• HLMNT: stick to e^+e^- (do not use τ data). With e^+e^- (incl. BaBar) discrepancy of 3-3.5 σ

New data from BESIII eagerly awaited... 2011 status:

Perturbative QCD vs. inclusive data above 2 GeV (below the charm threshold)

- Latest BES data (blue markers) in perfect agreement with perturbative QCD; data slightly higher than pQCD for $\sqrt{s} > 2.6$ GeV
- HLMNT use pQCD for $2.6 < \sqrt{s} < 3.7$ GeV and with (larger) BES errors
 - would have small shift downwards ($\sim -1.4 \cdot 10^{-10}$ for a_{μ}) if used from 2 GeV
 - Davier et al. use pQCD from 1.8 GeV

Recent `history' plot.

g-2 HVP numbers

$a_{\mu}^{HVP, LO}$ (10⁻¹⁰):

 Fair agreement between different e⁺e⁻ analyses, including recent updates:

HLMNT (11): 694.9 ± 3.7 (exp) ± 2.1 (rad) Jegerlehner (11): 690.8 ± 4.7 Davier et al (11): 692.3 ± 4.2

The `extremes' (both with τ data):
 Davier et al (11): 701.5 ± 4.7
 Benayoun et al (12): 681.2 ± 4.5

 New data available now will not shift the mean value strongly, but incrementally improve determination of a^{HVP}

σ_{had} : some recent new data

KLOE $\pi^{+}\pi^{-}$ data with $\sigma_{\mu\mu}$ normalisation:

- confirm previous KLOE measurements
- will not decrease tension with BaBar once included in next round of `global' σ_{had} compilations, but increase significance of KLOE (so may lead to slight decrease)
- task for WG RadioMonteCarLow to compare in detail possible reasons for difference, like the MCs and analysis techniques used

PLB720(2013)336, see talk by A Palladino

σ_{had}: some recent new data: K⁺K⁻(γ) from BaBar

arXiv:1306.3600, see talk by E. Solodov

- $a_{\mu} = 22.94 \pm 0.18 \pm 0.22$ up to 1.8 GeV vs. 21.63 \pm 0.27 \pm 0.68 for combined previous data
- significant shift up

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

1.01

1.02

1.03

1.04

 $|F_{K}|^{2}/$ fit - 1

- may need to take into account mass shift for best combination
- Comp. plots BaBar vs Novosibirsk:

σ_{had}: some recent new data: $2π^+2π^-(γ)$ from BaBar

PRD85(2012)112009, see talk by E. Solodov

- shift of +0.3 \times 10⁻¹⁰ for a_u
- error down to a third
- combination?

σ_{had} : some recent new data from Novosibirsk

CMD-3 6π charged PLB723(2013)82

- solid black: CMD-3 open green: BaBar
- full analysis will include 2(π⁺π⁻π⁰)

SND $\omega \pi^0$, arXiv:1303.5198

- many more anlayses reported with preliminary results, incl. 3π, 4π(2n)
- looking forward to rich harvest from SND and CMD-3
- see talks by I Logashenko and T Dimova

• Dyson summation of Real part of one-particle irreducible blobs Π into the effective, real running coupling $\alpha_{\rm QED}$:

$$\Pi = \operatorname{max}_{q}^{\gamma^{*}} \operatorname{max}_$$

Full photon propagator $\sim 1 + \Pi + \Pi \cdot \Pi + \Pi \cdot \Pi \cdot \Pi + \dots$

$$\rightarrow \alpha(q^2) = \frac{\alpha}{1 - \operatorname{Re}\Pi(q^2)} = \alpha / \left(1 - \Delta \alpha_{\operatorname{lep}}(q^2) - \Delta \alpha_{\operatorname{had}}(q^2)\right)$$

• The Real part of the VP, $\text{Re}\Pi$, is obtained from the Imaginary part, which via the *Optical* Theorem is directly related to the cross section, $\text{Im}\Pi \sim \sigma(e^+e^- \rightarrow hadrons)$:

$$\begin{split} \Delta \alpha_{\rm had}^{(5)}(q^2) &= -\frac{q^2}{4\pi^2 \alpha} \operatorname{P} \int_{m_{\pi}^2}^{\infty} \frac{\sigma_{\rm had}^0(s) \, \mathrm{d}s}{s - q^2} \,, \quad \sigma_{\rm had}(s) = \frac{\sigma_{\rm had}^0(s)}{|1 - \Pi|^2} \\ & \left[\rightarrow \sigma^0 \text{ requires 'undressing', e.g. via } \cdot (\alpha/\alpha(s))^2 \, \rightsquigarrow \, \text{ iteration needed} \right] \end{split}$$

• Observable cross sections σ_{had} contain the |full photon propagator|², i.e. |infinite sum|². \rightarrow To include the subleading Imaginary part, use dressing factor $\frac{1}{|1-\Pi|^2}$.

Parametrisations/routines based on `global' data compilations available from a few groups:

- Novosibirsk: <u>http://cmd.inp.nsk.su/~ignatov/vpl/</u> tabulation with ROOT package
- Davier et al: HVPTools (status of distribution? still in preparation?)
- Fred Jegerlehner's package: <u>http://www-com.physik.hu-berlin.de/~fjeger/software.html</u>
 set of routines with analytic codes and tabulations
 - uses rhad from Harlander+Steinhauser for Im part
 - regular updates (last 5.4.2012)

HLMNT routine

- provided upon request by authors (Daisuke Nomura or TT)
- standalone Fortran, partly analytic, partly tabulation
- current version is VP_HLMNT_v2_1 (from 27.1.2012), minor update imminent
- flag to control if narrow resonances included or not, but Φ and higher Υ always included through direct data integration

• Typical accuracy $\delta\left(\Delta \alpha_{\rm had}^{(5)}(s)\right)$

Error of VP in the timelike regime at low and higher energies (HLMNT compilation):

 \rightarrow Below one per-mille (and typically $\sim 5 \cdot 10^{-4}$), apart from Narrow Resonances where the bubble summation is not well justified.

Enough in the long term? Need for more work in resonance regions.

 $\Delta lpha(q^2)$ in the time-like: HLMNT compared to Fred Jegerlehner's new routines

 \rightarrow with new version big differences (with 2003 version) gone

- smaller differences remain and reflect different choices, smoothing etc.

LEP EWWG: The last Blueband plot?

$\Delta \alpha_{had}^{(5)}(M_Z^2)$ (units of 10⁻⁴)

- DHMZ: 275.7 ± 1.0
- Jegerlehner: 275.10 ± 2.18 274.98 ± 1.35 (Adler)
- HLMNT: 276.26 ± 1.38
- similar results by all groups now
- limited gain by using more pQCD

Future improvements

Importance of various 'channels'

error

3.09

[Numbers from HLMNT, 'local error infl.', $\cdot 10^{-10}]$

• Errors contributions to a_{μ} from leading and subleading channels (ordered) up to 2 GeV

Purely from data:

channel

 $\pi^+\pi^-$

'Higher multiplicity' region from 1.4 to 2 GeV with use of isospin relations for some channels: [Use of old inclusive data disfavoured.]

$\pi^+\pi^-\pi^0\pi^0$	1.26	Channel	contr. \pm error
3π	0.99	$K\bar{K}2\pi$	3.31 ± 0.58
$2\pi^+2\pi^-$	0.47	$\pi^+\pi^-4\pi^0$	0.28 ± 0.28
K^+K^-	0.46	$\eta\pi^+\pi^-$	0.98 ± 0.24
$2\pi^+ 2\pi^- 2\pi^0$	0.24	$K\bar{K}\pi$	2.77 ± 0.15
$K^0_S K^0_L$	0.16	$2\pi^+ 2\pi^- \pi^0$	1.20 ± 0.10

• 'Inclusive' region from 2 to ~ 11 GeV: 41.19 ± 0.82

Can be 'squeezed' by using pQCD (done by DHMZ from 1.8 GeV); region from 2 to 2.6 GeV: $15.69 \pm 0.63 \rightarrow 14.49 \pm 0.13$, only small changes for higher energies.

Future improvements

For g-2 the major tasks are

- improve 2π (better data, understand discrepancy between sets!)
- reanalyse/apply radiative corrections (work has started for HLMNT, needs collaboration of Exp and Th)
- higher energies will improve with input from SND, CMD-3 and BESIII

For $\Delta \alpha$ new data from BESIII and possibly the use of pQCD will squeeze the error.

(error)² value ∞ m_{π} m_{π} 0.6 rad. 1.4 0.6 $a_{
m \mu}^{
m had,LO~VP}$ 0.9 ∞ 1.4 0.9 $\infty m_{\underline{m} 0.6}$ 0.6 0.9 rad. .4 2 $\Delta \alpha_{\rm had}^{(5)}$ (M_Z^2 ∞

11

11

Pie diagrams from HLMNT 11:

Conclusions

- Low energy precision experiments with leptons strongly test the SM and already exclude/constrain many BSM scenarios
- Only possible with rich experimental programme, including many facilities to measure HVP, efforts to calculate (MC, RadCors, etc)
- Muon g-2 discrepancy consolidated at > 3 σ (and none of the HVP `puzzles' make it go away), but no signs for BSM at the LHC so far
- Will combined efforts (FF from γγ, lattice) help with L-by-L?
- Can we get the required ~ or > factor 2 in HVP? I believe we can.

Thank you.

The race is on.