

Helmholtz Russian Joint Research Group

Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies

Tunka-Rex: Status and Results of the First Measurements

Dmitriy Kostunin for the Tunka-Rex Collaboration May 24th 2013

Outline

- Radio emission from cosmic rays
- 2 Tunka-Rex
- Oata analysis and first events
- Reconstructed events
- Conclusions

Radio emission processes

- Geomagnetic deflection of charged particles: dominant effect, signal mainly EW polarized
- Variation of net charge excess: second-order effect, signal radial polarized
- Radio emission in MHz range

T. Huege et. al.

Radio emission processes

H. Schoorlemmer

Comparison of methods

Current status	Particles at ground	Fluor. / Cherenkov	Radio
Angular resolution	+	0/+	+
Energy	0	+	+
Primary mass	0	+	+ (?)
Exposure	+	0	-
Duty cycle	\sim 100%	~ 10%	\sim 95%
Energy threshold, eV	10 ¹³	10 ¹⁷ / 10 ¹²	10 ¹⁷

- Already shown: principle feasibility with radio (e.g. LOPES)
- Still to show: precision + large scale application

Cosmic ray energy spectrum

Tunka-Rex Collaboration

Tunka Radio Extension

- Radio extension to Tunka-133
- SALLAs connected to cluster center
- Externally triggered by Tunka-133

Tunka-Rex detector

- 18 antennas on the 1 km² area started data taking since Oct. 2012 (~ 30 antennas will be after full deployment)
- Existing DAQ
- Trigger and information from air-Cherenkov detector
- Radio quiet rural location

- Capabilities of joint operation
- Determine precision of reconstructed shower parameters by radio

Digital filtering

For the data analysis we use use the radio modules of the Auger Offline software¹

¹Pierre Auger Collaboration, NIM A 635 (2011) 92

Sample event

Reconstructed events

Total time of measurements \approx 450 hours

Cherenkov reconsructed provided by Tunka-133 Collaboration

- Reconstructed direction, energy, shower maximum with $\theta \leq 50^{\circ}$
- Direction reconstruction for events with $\theta > 50^{\circ}$

Reconstruction cuts

- Angle between shower axes reconstructed by Cherenkov and radio detectors less than 5°
- Taking core position from Cherenkov reconstruction only for events with $\theta \leqslant 50^\circ$
- Lateral distribution function fitting, cuts for the slope parameter (η)

Total reconstructed events: 146

- Reconstructed 62 events with $\theta \leq 50^\circ$
- Reconstructed 84 events with $\theta > 50^{\circ}$

Angular distribution of Tunka-Rex

Detector efficiency

May 24th 2013

Correlation with shower parameters

Correlation with amplitude

Dmitriy Kostunin - Tunka-Rex: Status and Results of the First Measurements

Conclusions

- First radio events were identified, direction reconstruction consistent with Cherenkov data.
- We confirm detection of very inclined ($\theta > 50^{\circ}$) showers based on Cherenkov trigger.
- We see the correlation between initial energy and signal strength.
- Correlation between shower maximum and lateral slope is under investigation.
- Tunka scintillator extension would provide more effective trigger operating 24 hours.

Tunka-Rex Collaboration

- N. M. Budnev², O. A. Gress², A. Haungs¹, R. Hiller¹, T. Huege¹,
- Y. Kazarina², M. Kleifges³, A. Konstantinov⁴, E. Konstantinov²,
- E. E. Korosteleva⁴, D. Kostunin¹, O. Krömer³, L. A. Kuzmichev⁴,
- $R.\ R.\ Mirgazov^2,\ V.\ V.\ Prosin^4,\ G.\ I.\ Rubtsov^5,\ C.\ R\"uhle^3,\ V.\ Savinov^2,$
- F. G. Schröder¹, E. Svetnitsky², R. Wischnewski⁶, A. Zagorodnikov²

¹ Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Germany

² Institute of Applied Physics ISU, Irkutsk, Russia

³ Institut für Prozessdatenverarbeitung und Elektronik, KIT, Germany

⁴ Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia

⁵ Institute for Nuclear Research of the Russian Academy of Sciences, Moscow

⁶ DESY, Zeuthen, Germany

Data acquisition and event merging

- Every run local clocks set to zero
- Cluster centers have independent triggers (more than 2 simultaneous signals from PMT consider as event)
- Delays in optical fibers are taken into account. Event time is
 T = local time + fiber delay
- We merge separate events with $\Delta T \leqslant 7000$ ns into one
- UTC time sets for each event in DAQ center and then data reader choses one for merged event.

