Lorentz Invariance Violation: The latest Fermi results and the GRB/AGN complementarity

J. Bolmont
LPNHE - Université Pierre & Marie Curie
Content

- Introduction
 - The formalism in use
 - Propagation vs. intrinsic lags
- The latest Fermi results
 - The three methods in use
 - Accounting for intrinsic lags
 - Results
- Conclusions and prospects
 - GRB/AGN complementarity
 - Future developments
Introduction
The formalism in use

- QG related effects should appear at $E \sim O(E_P = 1.2 \times 10^{19} \text{GeV})$
- These effects include deformation or violation of Lorentz Invariance
- For $E \ll E_P$, a series expansion is expected to be possible, giving:
 \[c' = c \left(1 \pm \xi \frac{E}{E_P} \pm \zeta^2 \frac{E^2}{E_P^2} \right) \text{ at the 2}^{\text{nd}} \text{ order} \]
- Depending on their energies, photons travel at different speeds
- Tiny modifications can add-up over very large propagation distances and lead to measurable delays
 \rightarrow use of variable and distant sources (GRBs, AGN flares)
- We consider two photons with energy E_1 and E_2 emitted at the same time and detected at times t_1 and t_2.
 - At the first order:
 \[\frac{\Delta t}{\Delta E} \approx \frac{\xi}{E_P H_0} \int_0^z dz' \frac{(1 + z')}{\sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda}} \]
 - At the second order:
 \[\frac{\Delta t}{\Delta E^2} \approx \frac{3 \zeta}{2 E_P^2 H_0} \int_0^z dz' \frac{(1 + z')^2}{\sqrt{\Omega_m (1 + z')^3 + \Omega_\Lambda}} \]

\[\Delta t = t_1 - t_2 \quad \Delta E = E_1 - E_2 \quad \Delta E^2 = E_1^2 - E_2^2 \quad \Omega_\Lambda = 0.7 \quad \Omega_m = 0.3 \]
The formalism in use

- QG related effects should appear at $E \sim O(E_p = 1.2 \times 10^{19} \text{ GeV})$
- These effects include deformation or violation of Lorentz Invarience
- For $E \ll E_p$, a series expansion is expected to be possible, giving:
 \[c' = c \left(1 \pm \xi \frac{E}{E_p} \pm \xi^2 \frac{E^2}{E_p^2} \right) \] at the 2\text{nd} order
- Depending on their energies, photons travel at different speeds
- Tiny modifications can add-up over very large propagation distances and lead to measurable delays → use of variable and distant sources (GRBs, AGN flares)
- We consider two photons with energy E_1 and E_2 emitted at the same time and detected at times t_1 and t_2.
 - At the first order:
 \[\frac{\Delta t}{\Delta E} \approx \frac{\xi}{E_p H_0} \int_0^z dz' \frac{(1 + z')}{\sqrt{\Omega_m(1 + z')^3 + \Omega_\Lambda}} \]
 - At the second order:
 \[\frac{\Delta t}{\Delta E^2} \approx \frac{3 \xi}{2 E_p^2 H_0} \int_0^z dz' \frac{(1 + z')^2}{\sqrt{\Omega_m(1 + z')^3 + \Omega_\Lambda}} \]

\[\Delta t = t_1 - t_2 \quad \Delta E = E_1 - E_2 \quad \Delta E^2 = E_1^2 - E_2^2 \]
\[\Omega_\Lambda = 0.7 \quad \Omega_m = 0.3 \]
QG Effects vs. Source Effects

- **BUT**: Emission processes or the structure of the source can introduce a time lag too!
- It is necessary to separate the two effects \rightarrow population studies

Quantum Gravity effect

- **Emission** \rightarrow **Source Effect**

Possible source effect

- **Emission** \rightarrow **Source Effect**

Propagation \rightarrow LIV Effect

Emission \rightarrow Source Effect
The latest Fermi results

«Constraints on Lorentz Invariance Violation with Fermi-LAT observations of GRBs»

V. Vasileiou, F. Piron, J. Cohen-Tanugi (LUPM Montpellier)
A. Jacholkowska, JB, C. Couturier (LPNHE Paris)
J. Granot (Open Univ. of Israel)
F. Stecker (NASA GSFC)
F. Longo (INFN Trieste)

Accepted for publication by PRD
arXiv:1305.1553
Overview

- Use of LAT data
 - 20 MeV - 300 GeV
 - High effective area
 - Low background
 - Good energy reconstruction accuracy
 (~10 % at 10 GeV)

- 4 GRBs are analyzed
 - 090510, 090902B, 090926A, 080916C
 - Known redshifts (from 0.9 up to 4.3)
 - Variability time scale down to tens of ms
 - Maximum energy detected: 31 GeV
 - ~100 events/GRB above 100 MeV

- 3 analysis methods ➔ «PairView», «Sharpness Maximization Technique», «Maximum Likelihood»
 - Complementarity in sensitivity
 - Reliability of the results
Method #1: PairView

- Calculate the spectral lags $l_{i,j}$ between all pairs of photons i and j in a dataset.
- The distribution of $l_{i,j}$ values peaks approximately at the true value of τ.
 - Histogram
- The peak position is determined using a Kernel Density Estimate of the distribution.
 - Smooth curve
- The KDE peak gives the estimate for τ.
 - Dashed line

$$l_{i,j} \equiv \frac{t_i - t_j}{E_{i}^{n} - E_{j}^{n}}$$
Method #2: Sharpness Maximization Technique

- LIV spectral dispersion smears light-curve structure and decreases sharpness.
- Apply an inverse dispersion to the data to maximize the sharpness.
 - Smooth curve
- The sharpness peak gives the estimate for τ.
 - Dashed line
- The sharpness S is defined by the formula on the right, where t'_i is the modified detection time of the i^{th} photon and ρ is a parameter selected using simulations.

$$S(\tau_n) = \sum_{i=1}^{N-\rho} \log \left(\frac{\rho}{t'_i + \rho - t'_i} \right)$$
Method #3: likelihood fit

- Study of the correlation between the arrival time and the energy of the photons
- Method used by Lamon et al. for INTEGRAL, by Martinez and Errando for MAGIC and by Abramowski et al. for H.E.S.S.
- We use the following form for the probability density function:

\[P(t, E) = N \int_0^\infty A(E_S) \Gamma(E_S) G(E - E_S, \sigma(E_S)) F_S(t - \tau E_S) \, dE_S \]

where \(\Gamma(E_S) \) is the emitted spectrum, \(G(E-E_S, \sigma(E_S)) \) is the smearing function in energy, \(A(E_S) \) is the acceptance of the detector and \(F_S \) is the emission time distribution at the source
- Here we assume linear and quadratic effects with a time-lag parameter \(\tau \) expressed in s/GeV (s/GeV^2)
- The likelihood function is then given by the product

\[L = \prod_i P_i(t, E) \]

over all photons in the studied sample
- The maximum of the likelihood gives the time-lag \(\tau_1 \) (\(\tau_q \)) in s/GeV (s/GeV^2)
Method #3: Example

- The minimum of the curve gives the best estimate of τ: on the right plot, 080916C (full line), 090902B (dotted line) and 090926A (dashed double-dotted line)
Results

- Three methods → three points for each GRB
- Markers → best estimate of τ
- 90% (99%) CL intervals

All confidence intervals are compatible with 0 dispersion

Constraints with the 3 methods are in good agreement
Accounting for Source-Intrinsic Effects

- It is probable the measured lag has two components:
 \[\tau = \tau_{\text{INT}} + \tau_{\text{LIV}} \]
 where \(\tau_{\text{INT}} \) is the intrinsic dispersion (due to the source) and \(\tau_{\text{LIV}} \) is the LIV-induced dispersion.

- There is no good model available to predict the value of \(\tau_{\text{INT}} \).
 ➔ A conservative modelization of \(\tau_{\text{INT}} \) is used.

- We assume the observations are dominated by source effects:
 - The PDF of \(\tau_{\text{INT}} \) is chosen to match \(\tau \) allowed by the data:
 - Average of 0
 - Width matching the width of \(\tau \)
 - \(\tau_{\text{INT}} \) is modelled to reproduce the allowed range of possibilities for \(\tau \):
 ➔ Worst case scenario
 ➔ Less stringent limits on \(\tau_{\text{LIV}} \)

Most conservative limits on \(\tau_{\text{LIV}} \)
95% CL lower limits on E_{QG}

- Subluminal case, Left: linear LIV, Right: quadratic LIV
- Bars: average constraint accounting for GRB-intrinsic effects
- Current limits improved by a factor 2-4

$E_{\text{QG}} \gtrsim 8 \ E_{\text{Pl}}$ for $n=1$

$E_{\text{QG}} \gtrsim 1.3 \times 10^{11}$ GeV for $n=2$
95% CL lower limits on E_{QG}

- Subluminal case, Left: linear LIV, Right: quadratic LIV
- Bars: average constraint accounting for GRB-intrinsic effects
- Current limits improved by a factor 2-4

$E_{QG} \gtrsim 8 E_{Pl}$ for $n=1$

$E_{QG} \gtrsim 1.3 \times 10^{11}$ GeV for $n=2$

Over the Planck scale for 090510, even accounting for intrinsic effects
Conclusions and prospects
Summary of the last Fermi results

- Paper available: arXiv/1305.3463
 - 30 pages
 - Detailed description of procedures, systematics, verification tests
 - Accepted by PRD

- 4 bright GRBs analysed
- 3 different methods used

\[E_{QG,1} > 7.6 \ E_{Pl} \]
\[E_{QG,2} > 1.3 \times 10^{11} \ \text{GeV} \]

- The most stringent and robust constraints for linear and quadratic LIV so far
- Linear LIV has reached the Planck scale boundary
- Quadratic LIV still need to be improved
GRB/AGN Complementarity

- Comparison between Vasileiou et al. results (ML) and previous results obtained with AGNs
- AGNs \rightarrow high statistics with ground-based instruments BUT low redshift (EBL) and low statistics with satellites
- GRBs \rightarrow high statistics with space instruments BUT lower energies and no detection from the ground

![Graph showing GRB/AGN Complementarity](image)

- High energies, low distance
- Low energies, large distance

<table>
<thead>
<tr>
<th>Event</th>
<th>Instrument</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mkn 421</td>
<td>Whipple</td>
<td>1999</td>
</tr>
<tr>
<td>Mkn 501</td>
<td>MAGIC</td>
<td>2008</td>
</tr>
<tr>
<td>PKS 2155-304</td>
<td>H.E.S.S.</td>
<td>2011</td>
</tr>
<tr>
<td>090510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>090902B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>090926A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>080916C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lower Limit on E_{γ}/E_{ρ} ($n = 1$, 95% CL, $s_\gamma = +1$)
What’s next ?

- CTA
 - Start around 2018
 - Large energy range coverage (~10 GeV - 100 TeV) with different sizes of telescopes
 - Overlap with satellites
 - Sensitivity increased by a factor 10
 - More sources discovered
 - Dedicated pointing strategy for transient source discoveries
 - More sources discovered that can be used for LIV searches

- Linear LIV has reached the physically meaningful bound of the Planck scale

- In the future, the effort should be put on constraining the quadratic LIV!
 - Ground-based detectors and satellites will need to work together to make the energy range as large as possible (GeV - TeV)
 - Necessary work on source effects
Grazie mille !