RICAP-13, Rome 23 May '13

Theoretical implications of the LHC results

or

The Higgs: so simple yet so unnatural

> Guido Altarelli Roma Tre/CERN

LHC 7-8 TeV

A great triumph: The 126 GeV Higgs discovery

A particle apparently just as predicted by the SM theory The main missing block for the experimental validation of the SM is now in place

A negative surprise: no production of new particles, no evidence of new physics

> Not at ATLAS&CMS although a big chunk of new territory has been explored Not in HF decays (LHCb, B-factories) [Nor in μ ->e γ (MEG),.... Perhaps a deviation in (g-2)_µ?]

A SM Higgs (or a good approximation to it) of mass $m_{\rm H} \sim 126$ GeV has been observed (~10 σ ATLAS + ~9 σ CMS + ~3 σ Tevatron. Total ~14 σ) decaying in $\gamma\gamma$, ZZ*, WW*, bb, $\tau\tau$

A large new territory explored at the LHC and no new physics

A big step from the Tevatron 2 TeV up to LHC 7-8 TeV (-> 13-14 TeV)

This negative result is perhaps depressing but certainly brings a very important input to our field

> a big change in perspective

New physics can appear at any moment but it is now conceivable that no new physics will show up at the LHC

 \pm

Naturalness? The big question mark!

The constraints from flavour physics are extremely demanding: adding effective operators to SM generally leads to very large Λ

The SM is very special and if there is New Physics, it must be highly non generic

> eg in Minimal Flavour Violation (MFV) models D'Ambrosio, Giudice, Isidori, Strumia'02

$m_{H} \sim 126$ GeV is compatible with the SM and also with the SUSY extensions of the SM

A malicious choice!

$$m_{H} = 125.6 \pm 0.4 \text{ GeV}$$

 $m_{H} \sim 126$ GeV is what you expect from a direct interpretation of EW precision tests: no fancy conspiracy with new physics to fake a light Higgs while the real one is heavy (in fact no "conspirators" have been spotted: no new physics)

Is it really the SM Higgs boson?

- Precise measurement of couplings Confirm $J^{PC}=0^{++}$ The next challenge!
- Heavier Higgs-like particles? 2HDM, MSSM?

J^{PC}=0⁺⁺?

Important to check directly, but other choices would change the interaction vertices and heavily affect rates

H -> $\gamma\gamma$ implies that the H spin cannot be 1 by angular momentum and Bose statistics (s=0,2 can go via s-wave)

With sufficient statistics the spin can be determined by distributions of H - > $\gamma\gamma$ or ZZ*-> 4leptons,

or WW* - > 4 leptons

Choi et al '02; De Rujula et al '10; J. Ellis, Hwang'12 ; Djouadi et al '13; De Boer et al '13.....

Information also via the HZ inv mass distributions

J. Ellis, Hwang, Sanz, You, '12

Present data already favour 0⁺⁺

The SM Higgs: very striking hierarchies of couplings reflected in production crosssections and branching ratios

V

The Higgs couplings are in proportion to masses: a striking signature [plus specified, gg, γγ, Zγ couplings]

[this is also true for a dilaton-like, but up to a common factor]

Nearly impossible to reproduce by accident

Agrees with a SM doublet: no Clebsch or mixing distortions

Couplings now checked at ~20%

The observed σ Br match the predictions within the present accuracy If not the SM Higgs a very close relative!!

The Tevatron confirms the bb channel

The precise measurements of Higgs couplings are crucial in order to determine to what extent it is SM

Contino

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} h)^{2} - \frac{1}{2} m_{h}^{2} h^{2} - \frac{d_{3}}{6} \left(\frac{3m_{h}^{2}}{v} \right) h^{3} - \frac{d_{4}}{24} \left(\frac{3m_{h}^{2}}{v^{2}} \right) h^{4} \dots$$
$$- \left(m_{W}^{2} W_{\mu} W_{\mu} + \frac{1}{2} m_{Z}^{2} Z_{\mu} Z_{\mu} \right) \left(1 + 2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} + \dots \right)$$
$$- \sum_{\psi=u,d,l} m_{\psi^{(i)}} \bar{\psi}^{(i)} \psi^{(i)} \left(1 + c_{\psi} \frac{h}{v} + c_{2\psi} \frac{h^{2}}{v^{2}} + \dots \right) + \dots$$

a ~ hVV c ~ hff

It would really be astonishing if no deviation from the SM is seen!

$$\sigma\left[\begin{array}{c} \varepsilon_{e} \\ \varepsilon_{e} \end{array}, \\ \varepsilon_{e} \end{array}, \\ \varepsilon_{e} \end{array}\right] \sim c^{2} \sigma\left[\begin{array}{c} \varepsilon_{e} \\ \varepsilon_{e} \end{array}, \\ \varepsilon_{e} \end{array}\right] \sim a^{2}$$

Espinosa

$$\begin{split} \Gamma(H \to \gamma \gamma) &= \frac{G_F \alpha^2 m_H^3}{128 \pi^3 \sqrt{2}} |A_W(\tau_W) + \sum_f N_C Q_f^2 A_f(\tau_f)|^2 \qquad \tau_i = m_H^2 / 4m_i^2 \\ &\quad \text{H} \gamma \gamma \text{ amplitude} \\ &\quad \sim |1.26a\text{-}0.26c|^2 \end{split}$$

$$\Gamma(H \to gg) = \frac{G_F \alpha_s^2 m_H^3}{64\pi^3 \sqrt{2}} |\sum_{f=Q} A_f(\tau_f)|^2$$

Each experiment fits the couplings from their data

CMS

ATLAS

 \bigoplus

Theorists informal and abusive combination of ATLAS&CMS data

 \oplus

New Physics in loops?

 \bigoplus

MSSM: separate u and d couplings

$$a = hVV = \sin(\beta - \alpha)$$
$$c_u = huu = \frac{\cos\alpha}{\sin\beta}$$
$$c_d = hdd = -\frac{\sin\alpha}{\cos\beta}$$

If $c_u > 1$ then $c_d < 1$ and viceversa

$$\tan 2\alpha = \tan 2\beta \frac{m_A^2 - m_Z^2}{m_A^2 + m_Z^2}$$

Impact of the Higgs discovery

The minimal SM Higgs: what was considered just as a toy model, a temporary addendum to the gauge part of the SM, is now promoted to the real thing.

The only known example in physics of a fundamental, weakly coupled, scalar boson with VEV

A death blow not only to Higgsless models, technicolor models.... but also a threat to all models with no fast enough decoupling

[If new physics comes in a model with decoupling the absence of new particles at the LHC implies small corrections to the H couplings]

The absence of accompanying new physics puts the issue of the relevance of naturalness at the forefront

Higgs, unitarity and naturalness in the SM

In the SM the Higgs provides a solution to the occurrence of unitarity violations in some amplitudes (W_L , Z_L scattering)

To avoid these violations one needed either one or more Higgs particles or some new states (e.g. new vector bosons)

Something had to happen at the few TeV scale!!

While this is a theorem, once there is the Higgs, the necessity of new physics on the basis of naturalness is not a theorem

Higgs light + quadratic divergences ---> cutoff (new physics) nearby

The SM as an effective theory

With new physics at Λ the low en. th. is an effective theory. After integration of the heavy d.o.f.: \mathcal{L}_i : operator of dim i

 $\mathcal{L} = o(\Lambda^4) + o(\Lambda^2)\mathcal{L}_2 + o(\Lambda)\mathcal{L}_3 + o(1)\mathcal{L}_4 + o(1/\Lambda)\mathcal{L}_5 + o(1/\Lambda^2)\mathcal{L}_6 + \dots$

Renorm.ble part

Non renorm.ble part

In absence of special symmetries or selection rules, by dimensions $c_i \mathcal{L}_i \sim o(\Lambda^{4-i}) \mathcal{L}_i$

 \mathcal{L}_2 : Boson masses ϕ^2 . In the SM the mass in the Higgs potential is unprotected: $c_2 \sim o(\Lambda^2)$

 \mathcal{L}_3 : Fermion masses $\overline{\psi}\psi$. Protected by chiral symmetry

and SU(2)xU(1): $\Lambda \rightarrow m \log \Lambda$

 \mathcal{L}_4 : Renorm.ble interactions, e.g. $\overline{\psi}\gamma^{\mu}\psi A_{\mu}$

 $\mathcal{L}_{i>4}$: Non renorm.ble: suppressed by $1/\Lambda^{i-4}$ e.g. $1/\Lambda^2 \overline{\psi} \gamma^{\mu} \psi \overline{\psi} \gamma^{\mu} \psi$

The naturalness argument for new physics at the EW scale is not a theorem but a conceptual demand

$$\delta m_{h|top}^2 = -\frac{3G_F}{2\sqrt{2}\pi^2} m_t^2 \Lambda^2 \sim -(0.2\Lambda)^2 \qquad \qquad h \qquad \qquad h$$

4

It is true that the SM theory is renormalizable. Thus if one ignores the hierarchy problem it is completely finite and predictive If you do not care about fine tuning you are not punished!!

Only if we see the cutoff as the scale where new physics occurs that solves the infinities problem, then the strong indication that Λ must be nearby follows

The crisis of the naturalness principle

Has been and is the main motivation for new physics at the weak scale

But at present our confidence on naturalness as a guiding principle is being more and more challenged

No indirect evidence of new physics (g-2?) No direct evidence of new physics at the LHC

Apparently some amount of fine tuning is imposed on us by the data. More now after the LHC7-8 results

Does Nature really care about our concept of Naturalness? Which form of Naturalness is Natural?

Solutions to the hierarchy problem

Supersymmetry: boson-fermion symm.

The most ambitious and widely accepted Simplest versions now marginal Plenty of viable alternatives

 Strong EWSB: Technicolor Strongly disfavoured by LEP. Coming back in new forms

> **Composite Higgs** Higgs as PG Boson, Little Higgs models.....

• Extra spacetime dim's that somehow "bring" M_{Pl} down to o(1TeV) [large ED, warped ED,]. Holographic composite H Exciting. Many facets. Rich potentiality. No baseline model emerged so far

Ignore the problem: invoke the anthropic principle
Extreme, but not excluded by the data

Solutions to the hierarchy problem

Supersymmetry: boson-fermion symm.

The most ambitious and widely accepted Simplest versions now marginal Plenty of viable alternatives

Strong EWSB: Technicolor
Strongly disfavoured by LED. Coming back in p

Strongly disfavoured by LEP. Coming back in new forms

Composite Higgs Higgs as PG Boson, Little Higgs models.....

• Extra spacetime dim's that somehow "bring" M_{Pl} down to o(1TeV) [large ED, warped ED,]. Holographic composite H Exciting. Many facets. Rich potentiality. No baseline model emerged so far

Ignore the problem: invoke the anthropic principle
Extreme, but not excluded by the data

Two main directions

• "Stealth" Naturalness: build models where naturalness is restored not too far from the weak scale but the related New Physics is arranged to be not visible so far

SUSY

For an orderly retreat simplest new ingredients are

- Heavy first 2 generations
- NMSSM (an extra Higgs singlet)

The last trench of natural SUSY!

H as PGB of extended symm. q and I mix with comp. ferm. Key role of light top partners

Composite Higgs

• Large Fine-Tuning models: disregard the naturalness principle in part or even completely and explore possible, viable models (wrt Dark Matter, v masses, Baryogenesis...) • Composite Higgs Georgi, Kaplan '84; Kaplan '91; Agashe, Contino, Pomarol '05; Agashe et al '06; Giudice et al '07; Contino et al '07; Csaki, Falkowski, Weiler '08; Contino, Servant '08; Mrazek, Wulzer '10; Panico, Wulzer '11; De Curtis, Redi, Tesi '11;Marzocca, Serone, Shu '12; Pomarol, Riva'12; De Simone et al '12......

The light Higgs is a bound state of a strongly interacting sector and a pseudo-Goldstone boson of an enlarged symmetry. eg. SO(5)/SO(4). Can be set up in a holographic ED context.

v ~ EW scale $f \sim SI$ scale m_{ρ} ~ $f < m_{\rho} < 4\pi f$ $\xi = (v/f)^2$ ξ interpolates between SM [$\xi \sim 0$] and some degree of compositeness m_{H} $\xi \sim 1$ similar to Technicolor m_{W} [ξ limited by precision EW tests $\xi < \sim 0.2$]

• Natural SUSY

$$-\frac{m_Z^2}{2} = |\mu|^2 + m_{H_u}^2$$

μ related to lightest Higgsino mass For MSSM to be natural $m_{\tilde{g}}, m_{\tilde{t}}, m_{\tilde{b}}, m_{\tilde{h}} < \sim 1 \text{ TeV}$

Tree level $sin^2 2\beta << 1$ (no extra singlet in MSSM)

$$\delta m_{H_u}^2|_{stop} = -\frac{3}{8\pi^2} y_t^2 \left(m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2 + |A_t|^2 \right) \log\left(\frac{\Lambda}{\text{TeV}}\right)$$

largest radiative corrections involve s-top and gluinos

$$\delta m_{H_u}^2|_{gluino} = -\frac{2}{\pi^2} y_t^2 \left(\frac{\alpha_s}{\pi}\right) |M_3|^2 \log^2\left(\frac{\Lambda}{\text{TeV}}\right)$$

Beyond the CMSSM, mSugra, NUHM1,2 that are under stress Heavy 1st, 2nd generations Barbieri

Searches of light gluinos, s-top, s-bottom: already biting hard

Gluino mediated s-top production: $m_g < 1.2$ TeV excluded under a variety of assumptions

Direct s-top production: $m_{stop} < 0.60-0.65$ TeV excluded assuming 100% BR for either $b\chi^+$ or $t\chi^0$

Going beyond the MSSM: an extra singlet Higgs In a promising class of models a singlet Higgs S is added and the μ term arises from the S VEV (the μ problem is solved) additional term $\lambda \operatorname{SH}_{u}\operatorname{H}_{d}$ $m_{h}^{2} = M_{Z}^{2}\cos^{2}2\beta + \lambda^{2}v^{2}\sin^{2}2\beta + \delta_{t}^{2}$

Mixing with S can modify the Higgs mass and couplings at tree level Hall et al '11, King et al '12, Barbieri et al '13.....

NMSSM: $\lambda < \sim 0.7$ the theory remains perturbative up to M_{GUT} (no need of large stop mixing, less fine tuning)

 λ SUSY: $\lambda \sim 1 - 2$ for $\lambda > 2$ theory non pert. at ~ 10 TeV

It is not excluded that at 126 GeV the second heaviest is seen while the lightest escaped detection at LEP

Ellwanger '11, Belanger et al '12

Is naturalness relevant? The multiverse alternative

- The empirical value of the cosmological constant Λ poses a tremendous, unsolved naturalness problem yet the value of Λ is close to the Weinberg upper bound for galaxy formation
 - Possibly our Universe is just one of infinitely many continuously created from the vacuum by quantum fluctuations
 - Different physics in different Universes according to the multitude of string theory solutions (~10⁵⁰⁰)

Perhaps we live in a very unlikely Universe but one that allows our existence

Given the stubborn refuse of the SM to step aside, and the terrible unexplained naturalness problem of the cosmological constant, many people have turned to the anthropic philosophy also for the SM

Actually applying the anthropic principle to the SM hierarchy problem is not convincing

After all, we can find plenty of models that reduce the fine tuning from 10¹⁴ to 10². And the added ingredients would not make our existence more impossible. So why make our Universe so terribly unlikely?

One can argue that the case of the cosmological constant is a lot different: the context is not as fully specified as the for the SM

A revival of models that ignore the fine tuning problem

In the SM for $m_H \sim 126$ GeV the SM vacuum is metastable

A clear evidence for new physics around or below the EW scale is Dark Matter

WIMP's are optimal candidates: Weakly Interacting Massive Particle with m ~ 10¹-10³ GeV

LHC can reach any kind of WIMP

For WIMP's in thermal equilibrium after inflation the density is:

$$\Omega_{\chi}h^2\simeq const.\cdot \frac{T_0^3}{M_{\rm Pl}^3\langle\sigma_Av\rangle}\simeq \frac{0.1~{\rm pb}\cdot c}{\langle\sigma_Av\rangle}$$

can work for typical weak cross-sections!!!

This "coincidence" is a good indication in favour of a WIMP explanation of Dark Matter

A "simple" cosmology emerges from Planck

More precise values of cosmological parameters

Dark Matter searches

• LHC

- Laboratory searches
- Astro/Cosmic Rays
- Axion searches

Laboratory searches

 \oplus

Astro/Cosmic Rays. The positron excess Dark matter unlikely: no anti protons, no gamma, too large σ 's

10-1 BESS 95+97 BESS 98 BESS 99 10-2 BESS 00 Wizard-MASS \overline{p} flux in $1/m^2$ sec sr GeV CAPRICE 9/ 10^{-3} PAMELA 08 10-10-5 10-6 10^{-1} 10⁰ 10¹ 10² 10^{3}

 \overline{p} kinetic energy T in GeV

p

 $e^{+}/(e^{+}+e^{-})$

The Fermi-LAT $\gamma\gamma$ line

 "Peak" seen in Earth limb data, largely at incident cos(θ) ~ 0.7.

Axion searches are very important

 \bigoplus

ADMX: an experiment for axion search

The absence of new physics appears as a paradox to us

Still the picture suggested by the last 20 years of data is simple and clear:

Take the SM, extended to include Majorana neutrinos, as the theory valid up to very high energy

Dark Matter? Axions Baryogenesis? Thru leptogenesis Coupling Unification? SO(10) with an intermediate scale

Possibly Nature has a way, hidden to us, to realize a deeper form of naturaleness at a more fundamental level

An explicit model: GA, Meloni ArXiv:1305.1001 An enlarged SM (to include RH v's, coupling unification in GUT) valid up to a large scale is an (enormously fine tuned) option following the A light Higgs anthropic philosophy, the Multiverse, the SO(10) non SUSY GUT Landscape SO(10) breaking down to $SU(4)xSU(2)_{I}xSU(2)_{R}$ at an intermediate scale (~10¹¹ GeV) [coupling unification, p-decay OK] Majorana neutrinos and see-saw (-> $0\nu\beta\beta$) recall that $\mu \rightarrow e \gamma$, Baryogenesis thru leptogenesis edm of neutron.... Axions as dark matter (axion searches) are not seen! No new physics at the LHC [(g-2)₁₁ and other present deviations from SM in colliders should be disposed of]

Conclusion from the LHC at 7 - 8 TeV

A particle that looks very much like the simplest elementary SM Higgs has been found

No evidence of new physics. Naturalness was not so far a good heuristic guiding principle

Precise tests of the Higgs couplings and further searches for new physics will be done in the next few years at 8 - 14 TeV

Meanwhile many unnatural models are being studied. Even the Multiverse and the anthropic philosophy are gaining credit