Outline

1. The ANTARES Neutrino Telescope
2. Transient Point Sources
3. GRB Analysis
4. μ-quasar Analysis
5. AGN Analysis
6. Conclusions
The ANTARES Neutrino Telescope
The ANTARES Neutrino Telescope

ANTARES is a Neutrino Telescope placed underwater in the sea bed of the Mediterranean Sea at the south of Toulon (France)
The ANTARES Neutrino Telescope

- String-based detector;
- Downward-looking (45°) PMTs;
- 2475 m deep;

- 12 detection lines
- 25 storeys/line
- 3 PMTs/storey
- 885 PMTs

40 km cable to shore
Detection Mechanism

Atmospheric muons \(\sim 10 \) per second

Atmospheric neutrinos few per day

Cosmic neutrinos few per year (may be)

- Atm muons: quite easy to remove (zenith + quality cuts)
- Atm neutrinos: irreducible isotropic background, low energy
ANTARES Performance

- 12-line data taking since 2008
- ~7000 detected neutrinos
- Median angular resolution 0.3-0.4° above ~10 TeV
- Effective area ~1m² @30 TeV
- Visibility of 3/4 of the sky, most of the galactic plane
- Real-time data processing
Transient Analyses

- ANTARES can perform a wide range of analyses
- Point Source analyses: discovering of astrophysical neutrino sources
- **Multi-messenger study**: Variable light emission sources time info as expected time for neutrino signal
- Improved performance with respect to not using time info at all

![Signal needed for a 5σ evidence the 50% of the times VS flare length](image-url)
Transient Physics

- Motivation: link CR/ν/γ via Fermi mechanism
- “Leptonic”, “Hadronic” and “Lepto-Hadronic” models
- Open questions over jet composition: relativistic fraction, maximum energies, CRs and UHECRs origin...

![Diagram of transient physics](image_url)
Transient Physics

Coincidence of γ and neutrino emission: different transient sources can be analyzed

1. **GRBs**: Most energetic known events in the Universe (sec ↔ days)
2. **μ-quasars**: Galactic variable sources (hours ↔ months)
3. **AGNs**: Extra-galactic variable sources (hours ↔ months)
Optical Counterparts

Supported by multi-wavelength telescope observations:

- **Satellites**: Rossi RXTE/ASM and Swift BAT/XRT for X-Rays and FermiLAT for γ-Rays
- **IACT**: HESS, MAGIC, VERITAS for HE and UHE γ-Rays
GRB selection

- Stacked GRBs within 2008 – 2011
- Long GRB selection only (short GRB class much less understood)
- 296 long GRBs (6.55 hours)
- Multi-messenger info provided by FERMI, SWIFT and GCN (Gamma-ray Coordinates Network) alerts.

Sky distribution of the selected 296 gamma-ray bursts in equatorial coordinates. The photon fluence of each burst is indicated by the colors.
GRB analysis

- Extended Maximum Likelihood search quality cut optimized per GRB highest discovery probability
- GRB simulations of expected neutrino fluence: NeuCosmA [Hümmer et al. (2010)] and Guetta [Guetta et al. (2004)] model spectra
- Quality cut optimized for NeuCosmA model

NeuCosmA and Guetta spectra. Thick: sum of the 297 individual spectra

Sample of discovery power curves for GRB110918
GRB results

- No event found in stacked GRB search windows
- Expected events: 0.48 (Guetta), 0.061 (NeuCosmA), 0.05 (bkg)
- Improvement in ANTARES upper limits with respect previous analysis

Upper limits @90% C.L. (dashed) for Guetta and NeuCosmA
Grey: previous limit, 40 GRBs (Adrián-Martínez et al., 2013 / JCAP 1303 (2013) 006)
μ-quasar selection

- Six μ-quasars with X-ray or γ-ray outbursts in the 2007-2010 satellite data:
 - Circinus X-1
 - GX339-4
 - H 1743-322
 - IGRJ17091-3624
 - Cygnus X-1
 - Cygnus X-3

- ν-search for 4 black hole binaries split in two:
 - during hard X-ray states: “slow” steady jet
 - during transition hard ↔ soft: “fast” discrete ejection
- Cyg X-3: γ-ray outburst using Fermi/LAT data
- Cir X-1: X-rays + orbital phase/jet connection
μ-quasar selection

ANTARES skymap for the 3058 neutrino candidates in the case of a $\lambda_{cut} > -5.2$ in equatorial coordinates (ANTARES events and studied μ-quasars)
μ-quasar analysis

- ANTARES data period 2007 - 2010 (813 live time days)
- Multi-messenger info provided by SWIFT, ROSSI and FERMI.
- Optimization cuts selects 3058 neutrino candidates ($\lambda_{cut} > -5.2$) and 5709 neutrino candidates ($\lambda_{cut} > -5.4$)

X-ray light curves of GX 339-4 between 2007 and 2010 (hard state and hard to soft transition filled areas)
μ-quasar results

- No neutrino found in time coincidence with μ-quasars
- Upper limits on neutrino flux (F.C. @90% C.L.)

<table>
<thead>
<tr>
<th>Source</th>
<th>nsig</th>
<th>Livetime (days)</th>
<th>Fluence U.L. 90% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cir X-1</td>
<td>0</td>
<td>100.5</td>
<td>16.9</td>
</tr>
<tr>
<td>GX 339-4 (HS)</td>
<td>0</td>
<td>147.0</td>
<td>10.9</td>
</tr>
<tr>
<td>GX 339-4 (TS)</td>
<td>0</td>
<td>4.9</td>
<td>19.7</td>
</tr>
<tr>
<td>H1743-322 (HS)</td>
<td>0</td>
<td>84.6</td>
<td>9.1</td>
</tr>
<tr>
<td>H1743-322 (TS)</td>
<td>0</td>
<td>3.3</td>
<td>30.3</td>
</tr>
<tr>
<td>IGRJ17091-3624</td>
<td>0</td>
<td>8.5</td>
<td>21.3</td>
</tr>
<tr>
<td>Cyg X-1 (HS)</td>
<td>0</td>
<td>182.8</td>
<td>14.1</td>
</tr>
<tr>
<td>Cyg X-1 (TS)</td>
<td>0</td>
<td>18.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Cyg X-3</td>
<td>0</td>
<td>16.6</td>
<td>5.7</td>
</tr>
</tbody>
</table>

AGN selection

- First AGN ANTARES analysis (Astropart. Phys. 36 (2012) 204)
- High variability, brightness and visibility Fermi blazar sources (reported in 1FGL and LBAS catalogs)

<table>
<thead>
<tr>
<th>Source</th>
<th>Class</th>
<th>Redshift</th>
<th>Visibility</th>
<th>Livetime (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS 0208-512</td>
<td>FSRQ</td>
<td>1.003</td>
<td>1.00</td>
<td>8.8</td>
</tr>
<tr>
<td>AO 0235+164</td>
<td>BLLac</td>
<td>0.940</td>
<td>0.51</td>
<td>24.5</td>
</tr>
<tr>
<td>PKS 0454-234</td>
<td>FSRQ</td>
<td>1.003</td>
<td>0.63</td>
<td>6.0</td>
</tr>
<tr>
<td>OJ 287</td>
<td>BLLac</td>
<td>0.306</td>
<td>0.39</td>
<td>4.3</td>
</tr>
<tr>
<td>WComae</td>
<td>BLLac</td>
<td>0.102</td>
<td>0.33</td>
<td>3.9</td>
</tr>
<tr>
<td>3C 273</td>
<td>FSRQ</td>
<td>0.158</td>
<td>0.49</td>
<td>2.4</td>
</tr>
<tr>
<td>3C 279</td>
<td>FSRQ</td>
<td>0.536</td>
<td>0.53</td>
<td>13.8</td>
</tr>
<tr>
<td>PKS 1510-089</td>
<td>FSRQ</td>
<td>0.360</td>
<td>0.55</td>
<td>4.9</td>
</tr>
<tr>
<td>3C 454.3</td>
<td>FSRQ</td>
<td>0.859</td>
<td>0.41</td>
<td>30.8</td>
</tr>
<tr>
<td>PKS 2155-304</td>
<td>BLLac</td>
<td>0.116</td>
<td>0.68</td>
<td>3.1</td>
</tr>
</tbody>
</table>
AGN analysis

- From September 6th to December 31st, 2008 (60.8 hours)
- γ-Ray light curves from FERMI.

γ-Ray light curve sample for 3C 279 during studied period
AGN results

- One neutrino event compatible with 3C 279 in time and direction ($\Delta \alpha = 0.56^\circ$) \rightarrow post trial value 10%
- Upper limits on neutrino flux (F.C. @90% C.L.)

<table>
<thead>
<tr>
<th>Source</th>
<th>$n(5\sigma)$</th>
<th>n_{obs}</th>
<th>Fluence U.L. 90% C.L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKS 0208-512</td>
<td>4.5</td>
<td>0</td>
<td>2.8</td>
</tr>
<tr>
<td>AO 0235+164</td>
<td>4.3</td>
<td>0</td>
<td>18.7</td>
</tr>
<tr>
<td>PKS 0454-234</td>
<td>3.3</td>
<td>0</td>
<td>2.9</td>
</tr>
<tr>
<td>OJ 287</td>
<td>3.9</td>
<td>0</td>
<td>3.4</td>
</tr>
<tr>
<td>WComae</td>
<td>3.8</td>
<td>0</td>
<td>3.6</td>
</tr>
<tr>
<td>3C 273</td>
<td>2.5</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>3C 279</td>
<td>5.0</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>PKS 1510-089</td>
<td>3.8</td>
<td>0</td>
<td>2.8</td>
</tr>
<tr>
<td>3C 454.3</td>
<td>4.4</td>
<td>0</td>
<td>23.5</td>
</tr>
<tr>
<td>PKS 2155-304</td>
<td>3.7</td>
<td>0</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Neutrino event during 3C 279 flare
AGN analysis prospects

Updated analysis 2008 - 2012:

- Multi-messenger data: Fermi and IACT (HESS/MAGIC/VERITAS)
- Selection of 41 sources and 6 specially significant flares from FERMI photon counting data
 - Inclusion of IACT bibliography collected flares
 - Developed a Maximum Likelihood Block method for denoising FERMI photon counting light curves for flaring states identification
 - Various energy spectra taken in consideration: E^{-2}, E^{-2} with cutoffs @1 TeV and 10 TeV, E^{-1}
 - Implementation of a possible lag in ν/γ signal in the likelihood for avoid missing short flares
 - ...

- Unblinding in process
AGN analysis prospects

Photon counting map and light curve for 3C 279 from Sep’08 to Dec’11
AGN analysis prospects

Updated analysis 2008 - 2012:

- Multi-messenger data: Fermi and IACT (HESS/MAGIC/VERITAS)
- Selection of 41 sources and 6 specially significant flares from FERMI photon counting data
- Inclusion of IACT bibliography collected flares
- Developed a Maximum Likelihood Block method for denoising FERMI photon counting light curves for flaring states identification
- Various energy spectra taken in consideration: E^{-2}, E^{-2} with cutoffs @1 TeV and 10 TeV, E^{-1}
- Implementation of a possible lag in ν/γ signal in the likelihood for avoid missing short flares
- ...
- **Unblinding in process**
Conclusions

1. ANTARES is the biggest neutrino telescope underwater and the biggest in the northern hemisphere.

2. High duty cycle and an instantaneous field of view of 2π, including the galactic center.

3. Transient and multi-messenger analyses are performed.

5. First results on μ-quasar analysis with ANTARES (2007-2010).

Thank you for your attention