VHE cosmic γ rays and fundamental physics (with emphasis on photon propagation)

Alessandro De Angelis INFN-U.Udine/INAF/LIP-IST Lisboa

- Introduction: why gamma rays? How?
- Some results related to fundamental physics
- What's next

Highlight in γ-ray astrophysics (MAGIC, HESS, VERITAS)

- Thanks mostly to Cherenkov telescopes, imaging of VHE (> 1000 GeV) galactic sources and discovery of many new galactic and extragalactic sources: ~ 160 (and >200 papers) in the last years. ~500 sources above 10 GeV
 - And also a better knowledge of the diffuse gammas and electrons
- A comparable success in HE (the Fermi realm); a 10x increase in the number of sources
- A new tool for cosmic-ray physics and fundamental physics

Main physics results and perspectives (with emphasis on fundamental physics)

- Cosmic Rays
- Search for "WIMP" Dark Matter
- Photon propagation
 Transparency of the Universe;
 Energy of the vacuum;
 Tests of Lorentz Invariance;
 Cosmology

How do gamma rays reach us?

$$\gamma_{VHE}\gamma_{bck} \rightarrow e^+e^-$$

$$\epsilon > \epsilon_{\rm thr}(E, \varphi) \equiv \frac{2 \, m_e^2 \, c^4}{E \, (1 - \cos \varphi)}$$

$$\sigma_{\gamma\gamma}(E,\epsilon,\varphi) = \frac{2\pi\alpha^2}{3m_e^2}W(\beta) \simeq 1.25 \cdot 10^{-25} W(\beta) \,\mathrm{cm}^2 ,$$

$$W(\beta) = \left(1 - \beta^2\right) \left[2\beta \left(\beta^2 - 2\right) + \left(3 - \beta^4\right) \ln \left(\frac{1 + \beta}{1 - \beta}\right)\right]^{\frac{1}{26}}$$

$$\lim_{\alpha \to \infty} \frac{1}{2} = 1.70 \cdot 10^{-25} \, \text{cm}^2 \, \text{for } \beta \simeq 0.70.$$
an isotropic background, it is maximized for

Maximum $\sigma_{\gamma\gamma}^{\text{max}} \simeq 1.70 \cdot 10^{-25} \,\text{cm}^2 \,\text{for } \beta \simeq 0.70.$ For an isotropic background, it is maximized for

$$\epsilon(E) \simeq \left(\frac{900 \,\mathrm{GeV}}{E}\right) \,\mathrm{eV}$$

Exercise 1

Extragalactic Sources

...

 1ES 0502+675
 z=0.34

 PKS 1510-089
 z=0.36

 4C +21.43
 z=0.43

 3C 66A
 z=0.44

3C 279 z=0.54 PKS 1424+240 z > 0.6

Are our AGN observations consistent with theory (1)?

Are our AGN observations consistent with theory (2)?

Measured spectra affected by attenuation in the EBL:

Attempts to quantify the problem overall

- Analysis of AGN
 - For each data point, a corresponding lower limit on the optical depth τ is calculated using a minimum EBL model
 - Nonparametric test of consistency
 - Disagreement with data: overall significance of 4.2 σ
 - => <u>Understand experimentally the outliers</u>

(Horns, Meyer 2011)

A reminder: EBL rather well constrained, and extrapolation from Fermi are possible

Alessandro De Angelis

If there is a problem

Explanations range from the standard ones

- very hard emission mechanisms with intrinsic slope < 1.5 (Stecker 2008)
- Very low EBL, plus observational bias, plus a couple of "wrong" outliers

to almost standard

γ-ray fluxes enhanced by relatively nearby production by interactions of primary cosmic rays or v from the same source

to possible evidence for new physics

- Oscillation to a light "axion"?
 - (DA, Roncadelli & MAnsutti [DARMA], PRD2007, PLB2008)
 - Axion emission (Simet+, PRD2008)
 - A combination of the above (Sanchez Conde et al. PRD 2009)
- Violation of the Lorentz invariance

Axions and ALPs

- The "strong CP problem": CP violating terms exist in the QCD Lagrangian, but CP appears to be conserved in strong interactions
- Peccei and Quinn (1977) propose a solution: clean it up by an extra field in the Lagrangian
 - Called the "axion" from the name of a cleaning product
 - Pseudoscalar, neutral, stable on cosmological scales, feeble interaction, couples to the photon
 - Can make light shine through a wall
 - The minimal (standard) axion coupling g

 m; however, one can have an "ALP" in which g = 1/M is free from m

The photon-axion mixing mechanism

$$L_{a\gamma\gamma} = g_{a\gamma} \left(\vec{E} \cdot \vec{B} \right) a$$

$$V \sim V \Rightarrow a \sim V$$

Propagation: Raffelt-Stodolsky 1987; Csaki-Kaloper-Terning 2002; DA Roncadelli MAnsutti 2007; Simet Hooper Serpico 2008

Magnetic field 1 nG < B < 1aG (AGN halos). Cells of ~ 1 Mpc

- m_a < 0.02 eV (direct searches)
- $g < 10^{-10} \,\text{GeV}^{-1}$ from astrophysical bounds

If B \sim 0.1–1 nG, λ \sim 1-10 Mpc, observations can be explained

3.5

Note: if conversion "a la Simet-Hooper-Serpico", => the effect could be directional

Could also be something else:

Whatever (light and almost sterile) particle feebly coupling to the photon

Exercise 2

- Paraphoton
 - Shadow photon
- New millicharged particles¹⁴

Intergalactic magnetic fields: indications from DARMA

Preferred values for m, g

Even more exotic explanations: is Lorentz invariance exact?

- For longtime violating Lorentz invariance/Lorentz transformations/Einstein relativity was a heresy
 - Is there an aether? (Dirac 1951)
 - Many preprints, often unpublished (=refused) in the '90s
- Then the discussion was open
 - Trans-GZK events? (AGASA collaboration 1997-8)
 - LIV => high energy threshold phenomena: photon decay,
 vacuum Cherenkov, GZK cutoff (Coleman & Glashow 1997-8)
 - GRB and photon dispersion (Amelino-Camelia et al. 1997)
 - Framework for the violation (Colladay & Kostelecky 1998)
 - LIV and gamma-ray horizon (Kifune 1999)

– ...

LIV? New form of relativity?

- Von Ignatowsky 1911: {relativity, omogeneity/isotropy, linearity, reciprocity} => Lorentz transformations with "some" invariant c (Galilei relativity is the limit $c \rightarrow \infty$)
- CMB is the aether: give away isotropy?
- QG motivation: give away linearity? (A new relativity with 2 invariants: "c" and E_P)
- In any case, let's sketch an effective theory...
 - Let's take a purely phenomenological point of view and encode the general form of Lorentz invariance violation (LIV) as a perturbation of the Hamiltonian (Amelino-Camelia+)

A heuristic approach: modified dispersion relations (perturbation of the Hamiltonian)

We expect the Planck mass to be the scale of the effect

$$E_{P} = \sqrt{hc/G} \cong 1.2 \times 10^{19} \text{GeV}$$

$$H^{2} = m^{2} + p^{2} \rightarrow H^{2} = m^{2} + p^{2} \left(1 + \xi \frac{E}{E_{P}} + \dots\right)$$

$$H \xrightarrow{p >>} p \left(1 + \frac{m^{2}}{2p^{2}} + \xi \frac{E}{2E_{P}} + \dots\right)$$

$$v = \frac{\partial H}{\partial p} \cong 1 - \frac{m^{2}}{2p^{2}} + \xi \frac{p}{E_{P}} \Rightarrow v_{\gamma} \cong 1 + \xi \frac{E}{E_{P}}$$

=> effect of dispersion relations at cosmological distances can be important at energies well below Planck scale:

$$\Delta t_{\gamma} \cong T\Delta E \frac{\xi}{E_P}$$

Also an effect on the cross sections

Enhanced transparency of the Universe wrt QED

$$c^2 p^2 = E^2 \left[1 + \xi \frac{E}{E_s} + O\left(\frac{E}{E_s}\right)^2 \right]$$

Rapid variability, and the possible dispersion of the speed of light

Tests of Lorentz violation: the name of the game

Present limits (Fermi's GRB, Vasileiou+ 2013)

- Linear: ξ < 7.6 (scale of violation E_{s1} > 7.6 E_p)
- Quadratic: $E_{s2} > 1.3 \ 10^{11} \, \text{GeV}$

To decetct 2nd order effects, ground-based detectors (Cherenkov and HAWC) should rule

$$(\Delta t)_{obs} \cong \frac{3}{2} \left(\frac{\Delta E}{E_{s2}}\right)^2 H_0^{-1} \int_0^z dz' \frac{(1+z')^2}{\sqrt{\Omega_M (1+z')^3 + \Omega_\Lambda}}$$

Two possible extraordinary claims

- A possible relation between arrival time and energy
- Signal from sources far away hardly compatible with EBL
- We should keep in mind that

$$c^{2}p^{2} = E^{2} \left[1 + \xi \frac{E}{E_{s}} + O\left(\frac{E}{E_{s}}\right)^{2} \right]$$

- Extraordinary claims require extraordinary evidence
 - New Scientist, SciAm blog/news, ..., and then?
- Claims must be followed up
 - If we see this in such sources, what else do we expect?
 - Fundamental implications of unexpected findings?
 - Are we seeing a part of the same big picture?

A no-loss situation: if propagation is standard, cosmology with AGN

GRH depends on the γ -ray path and there the <u>Hubble constant and</u> the cosmological densities enter => if EBL density is known, the GRH might be used as a distance estimator

$$\frac{dI}{dz} = c \cdot \frac{1/(1+z)}{H_0 \left[\Omega_M (1+z)^3 + \Omega_k (1+z)^2 + \Omega_{\lambda}\right]^{1/2}}$$

GRH behaves differently than other observables already used for cosmology measurements.

EBL constraints can pave the way for the use of AGNs to fit Ho, $\Omega_{\rm M}$ and Ω_{Λ} ...

Determination of H_0 , Ω_M and Ω_Λ

Using the foreseen precision on the GRH measurements of 20 extrapolated AGN, cosmological parameters can be fitted

A wish list for the future

Galactic sources & CR

AGN & gamma prop.

- New particles, new phenomena
 - dark matter and astroparticle physics

The CTA concept (a possible design)

Summary

- Clear interplay between VHE (γ) astrophysics and fundamental physics; this model of cooperation has worked well, and can work well in the future
 - We are confident that this exchange between complementary worlds will be useful, as history of particle physics demonstrated
 - This is especially true for relativity and gravitation
- Cosmic Rays:
 - SNR as galactic sources established
 - Astronomy with charged CR is difficult
 - Astronomy with neutrinos is not easy
 - VHE photons can be the pathfinder
- Still no detection of DM
 - The information from no detection is not as good as for accelerators
- A few clouds might hide new physics
 - Photon propagation
- Rich fundamental science (and astronomy/astrophysics) from gamma rays
 - HEA is exploring regions beyond the reach of accelerators
 - A "simple" extension of present detectors is in progress: CTA