

Roma International Conference on AstroParticle Physics. RICAP-13

University "La Sapienza", Roma, Italy May 22 – 24, 2013

Cosmic rays spectrum from the Pierre Auger Observatory

Gonzalo Rodriguez for the Pierre Auger Collaboration

INFN Roma Tor Vergata

Flux of Cosmic Rays

Pierre Auger Observatory Energy > 10¹⁸ eV

Pierre Auger Observatory research goals Energy Spectrum of UHECR (E > 10¹⁷ eV)

- Ankle region
- 2nd Knee region (with the lower energies extensions)
- End of the spectrum (GZK region)

Arrival Direction Distribution

- Search for departure from isotropy – point sources

Mass Composition

- Nuclei, photons, neutrinos, etc.

Pierre Auger Observatory research goals Energy Spectrum of UHECR (E > 10¹⁸ eV)

- Ankle region
- 2nd Knee region (with the lower energies extensions)
- End of the spectrum (GZK region)

Arrival Direction Distribution

- Search for departure from isotropy – point sources

Mass Composition

- Nuclei, photons, neutrinos, etc.

The Pierre Auger Experiment

- ~ 1600 Surface Detector (SD) Stations
- 1.5 km spacing
- 3000 km²

Low energy extension

- Aim to $E \approx 10^{17} \text{ eV}$
- AMIGA
 - Denser array plus muon detectors
- HEAT
 - 3 additional FD telescopes with a high elevation FoV

~ 60 km

- 4 Fluorescence Detectors (FD)
- 6 x 4 Fluorescence Telescopes

Surface Detector Station

- Water Cherenkov Tank

- Samples the density of secondaries at ground
- Shower size -> Energy
- Time -> direction
- 100% Duty cycle
- SD station
 - Plastic Tank
 - Reflective tyvek liner
 - 12 m³ purified water
 - 3 PMTs (9 inches)

Fluorescence Detector

- Operates in moonless nights
 - Duty cycle ~13%
- Collects the fluorescence photons to reconstruct the energy deposit longitudinal profile
- 6 Telescopes each with 30° x 30° FoV
- Camera composed by 440 PMTs

Atmospheric monitoring

SD event reconstruction <u>below</u> 60⁰

Reconstruction procedure:

- Shower direction (θ,φ) using the time information of each time.
- Angular resolution is less than 1⁰.
- Lateral Distribution Fit (LDF) from the recorded signals
- The signals near the core are dominated by the Electromagnetic component of the shower.
- Energy is obtained using the signal measured at 1000 meters from the shower core S(1000)

SD event reconstruction above 60°

- EM component is absorbed in the atmosphere.
- Signals in the tanks are produced by muons
- Cylindrical symmetry is broken due to earth magnetic field

muon density (m^{-5}) 10⁻¹ 10⁻²

1000

1500 r (2000

2500

3000

-3

Background for neutrino showers

The core position and size parameter are obtained using 2D muon density profiles.

 \rightarrow The size parameter is related with the number of muons at 10¹⁹ eV.

Fluorescence Reconstruction

- Reconstruct geometry from the time of each pixel plus at less one SD tank.

- Fit longitudinal shower profile.
- Calorimetric measurement.

- $\mathbf{E}_{FD} = \mathbf{f}_{inv} \mathbf{x} \mathbf{E}_{cal}$
- Fluorescence energy is almost independent of MC model.

Pierre Auger as a Hybrid detector

- Same event recorded with SD & FD
- Shower size from SD can be calibrated using the FD energy.
- SD Energy estimation is independent of MC

SD Event selection and acceptance

- Physics trigger T4: 3ToT
- Quality trigger T5: Tank with maximum signal surrounded by 6 active stations.
- Full efficiency: Energy > 3x10¹⁸ eV
- Zenith angle range: [0,60]⁰ and [62,80]⁰
- Data period: Jan 2004 to Sept 2010
- Exposure:
 20905 km² yr sr, uncertainty 3%

13

FD Event quality cuts

- \rightarrow Xmax in the FoV
- $\rightarrow \Delta E/E < 20\%$
- \rightarrow Cherenkov Fraction < 50%

 $\rightarrow \chi^2_{linear} - \chi^2_{GH} > 4$

- \rightarrow hole in the profile < 20%
- \rightarrow maxVOAD 0.1
- \rightarrow LidarCloudRemoval 25
- \rightarrow MinCloudDepthDistance -50 50
- \rightarrow MaxCloudThickness 100
- \rightarrow reject bad Pixels

- \rightarrow skip Saturated pixels
- \rightarrow nAxisPixels 5
- $\rightarrow \Delta X max < 40 \text{ gr.cm}^{-2}$
- \rightarrow Chi²_{GH}/ndf < 2.5
- \rightarrow Distance to core < 750m
- \rightarrow Delta T < 300 ns
- \rightarrow Fiducial volume cuts

Energy Calibration of the SD

Systematic uncertainties in the FD energy measurement

Source	Systematic uncertainty
 Fluorescence yield P,T and humidity effecs on yield Calibration Atmosphere Reconstruction Invisible energy 	14% 7% 9.5% 4% 10% 4%
TOTAL	22%

Systematic uncertainties in the FD energy measurement

Source	Systematic uncertainty
- Fluorescence yield	14%

The energy scale and the systematics uncertainties will be update in the ICRC 2013

- Reconstruction - Invisible energy	4%
TOTAL	22%

Energy Spectrum: SD & FD Hybrid

SD Exposure (01/2004-12/2010)

-geometrical calculation (~20905 km² yr sr) syst. uncertainties: ~ 3%

Hybrid Exposure (11/2005-09/2010)

- time-dependent Monte Carlo simulations
 syst. uncertainties ~10% (6%) at 10¹⁸ eV (10¹⁹ eV)
 - SD has a higher exposure allowing to reach higher energies
 - Energy resolution is around 15%
 - Unfolding method to correct for bin-to-bin migration
 - FD (Hybrid) can reach lower energies but exposure is MC based
 - Good agreement between FD and SD

Spectrum with inclined events

 10^{-24}

vertical

 10^{19}

E/eV

¢

Energy Calibration with FD energy N_{19} is the shower size -> related to the <u>total number of muons</u> **Energy** > $4x10^{18}$ eV Direct measurement of the hadronic shower component. 62⁰ > zenith < 80⁰ lg(E/eV) $-N_{19} = A(E/10^{19} \text{eV})^B$ 10^{1} 18.6 18.8 19.0 19.2 19.4 19.6 19.8 20.0 20.2 events 10^{-18} 20571329 $^{-2}\,{
m sr}^{-1}\,{
m yr}^{-1}\,{
m eV}^{-1}$ 10^{-19} **Jan 04 – Dec 10** N_{19} 1.00 10^{-20} 0.98 0.96 ML LS 10^{-21} 0.94100 0.92 0.90 10^{-22} 2.05 2.10 2.15 2.20 2.25 Α km 10^{-23} 1019 10^{20} inclined

Full agreement with the vertical Flux

 $E_{\rm FD}/{\rm eV}$

 10^{20}

- Ankle region clearly observed
- Galatic to extragalatic transition?
 - Astrophysical interpretation depends:
 - Primary composition
 - Sources distribution

M. Unger, arXiv:0812.2763[astro-ph]

- Auger data shows a flux suppression at the highest energies
 - Cutoff significance > 20 σ
- This feature is compatible with:
 - GZK cuttoff
 - Greisen, Zatsepin, Kuz'min (1966)
 - Cosmic ray interaction with CMB
 - Sources running out of power

- Auger data shows a flux suppression at the highest energies
 - Cutoff significance > 20 σ
- This feature is compatible with:
 - GZK cuttoff
 - Greisen, Zatsepin, Kuz'min (1966)
 - Cosmic ray interaction with CMB
 - Sources running out of power

- Auger data shows a flux suppression at the highest energies
 - Cutoff significance > 20 σ
- This feature is compatible with:
 - GZK cuttoff
 - Greisen, Zatsepin, Kuz'min (1966)
 - Cosmic ray interaction with CMB
 - Sources running out of power

Auger/HiRes /TA compatible within their energy scale systematic uncertainties

Summary of the results

We measure the CR energy spectra using:

- SD vertical events, zenith < 60°
- SD inclined events 62⁰ > zenith < 80⁰
- FD hybrid events
 - Full agreement within the uncertainties.
 - Combined spectrum -> Energy > 10¹⁸ eV

Two features are observed in the Energy spectrum.

- Ankle clearly observed around (E ~ 4.2 X 10¹⁸ eV)
- Flux suppression established at (E > 4.3 X 10¹⁹ eV)

The shape and energy scale of the spectrum are compatible with others CR experiments within the systematics uncertanties.