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Abstract

Fermi LAT has shown that GRBs produce photons in the range 10 — 94 GeV (126 GeV redshift corrected for GRB 130427A). Limited detector
size constrains the sensitivity of space borne instruments at the highest energies. Ground based instruments can extend observations from 30
GeV to 300 GeV. Higher energy observations of GRBs would enable better modeling of the GRBs themselves, it would allow us to probe the
extragalactic background light and would constrain Lorentz invariance violation. We show here that air shower array HAWC, currently under
construction, will be mostly sensitive to the prompt phase of short GRBs and that it can have a rate for detecting GRBs as high a 1.65 GRBs/

year.
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zenith angle. Since the signal for scalers are

of Nhit>30 as a function of energy and
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air shower. GRB detection rate in LAT above 10 GeV
We have used the same model to verify that the predicted rate of GRB in Fermi LAT.
The simulation published by the HAWC collaboration [4] corresponds to an older We predict 1.2 long GRBs/year above 10 GeV and 0.26 short GRBs/year in Fermi LAT.
configuration of the detector that does not include a central 10” PMT in each HAWC In the three year catalog there are 5 long GRBs and one short GRB above 10 GeV. We
tank. Thus the calculations presented here underestimate the maximum GRB rate. conclude that our model is a reasonable description of the 10 GeV rate.
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