SEARCH FOR THE SEMILEPTONIC WW/WZ DECAY IN PROTON-PROTON COLLISIONS AT $\sqrt{s} = 7$ TEV WITH THE ATLAS DETECTOR USING 2011 DATA

> Chiara Roda Federico Bertolucci

Introduction

challenging final state:

- W+jets is dominant
- S/B < 1%

muon channel:

≥

leptonic

hadronic W/Z

- trigger: lowest unprescaled μ
- 1 muon with $p_T > 25$ GeV
- veto on second lepton
- track and calo isolation
- vertex pointing: d₀/σ(d₀) < 3
- *₽*_T > 25 GeV

M_T(W) > 40 GeV

- jet cleaning and overlap removal
- at least 2 good jets with $p_T > 25$ GeV and $|\eta| < 2.8$
- |JVF| > 0.75 if $|\eta| < 2.5$
- $\Delta \phi(\not\!\!\! E_T, j_{lead}) > 0.8$: further reduction of multijet background
- $|\eta_{jet}| < 2$: avoid mis-modeling in forward jets in boson+jets
- $\Delta R(j_1, j_2) > 0.7$: avoid mis-modeling due to a generator level cut
- $|\Delta \eta(j_1, j_2)| < 1.5$: improve *S*/*B*
- |Δφ(j₁, j₂)| < 2.7: increase S/B

Analysis selection

electron channel:

- trigger: lowest unprescaled e
- 1 electron with $p_T > 25$ GeV
- veto on second lepton
- track and calo isolation
- vertex pointing: d₀/σ(d₀) < 10

QCD data-driven estimate

QCD contribution is extracted using a data-driven method because it is very difficult to model the multijet background

- already used in W+jets measurement
- enrich data samples with QCD:
 - invert isolation cuts in muon data
 - loose selection cuts in electron data
- extracted parameteres:
 - QCD normalization
 - W+jets, Z+jets scale factors
- QCD fraction in e channel: $\sim 8\%$
- QCD fraction in μ channel: \sim 6%

Background estimation

- normalization: cross sections at NLO or LO+k-factors
- expected shapes: W/Z + jets, W/Z + HF, top and single-top, WW/WZ
- QCD: data driven

Process	Generator	cross-section σ (pb) (× BR)
Inclusive $W \to \ell \nu$	ALPGEN	10.5×10^3 [?]
Inclusive $Z/\gamma^* \to \ell\ell \ (M_{\ell\ell} > 40 \text{ GeV})$	ALPGEN	10.7×10^2 [?]
Inclusive $Z/\gamma^* \to \ell\ell \ (10 < M_{\ell\ell} < 40 \text{ GeV})$	ALPGEN	3.9×10^3 [?]
tī	MC@NLO	166.8
Single top Wt	MC@NLO	15.6
Single top s-channel	MC@NLO	0.47
Single top t-channel	MC@NLO	6.65
WW	HERWIG	45.0
WZ	HERWIG	18.0
ZZ	HERWIG	5.96
$\gamma W \rightarrow \ell \nu (\ell = e, \mu, \tau)$	PYTHIA,MADGRAPH	135.4
Wbb	ALPGEN	723.0
Zbb	ALPGEN	25.8
Wcc	ALPGEN	256.9
Wc	ALPGEN	914.4

Data/MC agreement

Dijet distributions

 M_{ii} distribution and normalized templates:

- selection efficiency: $\epsilon \sim 1.1\%$, S/B ratio: 2.6%
- templates are used for a fit method to extract $WW/WZ~\sigma$
- binned maximum likelihood fit to M_{jj} distributions
- systematic uncertainties and background normalizations treated as nuisance parameters; JES and QCD estimated with toy experiments

New selection

- leading jet $p_T > 30$ GeV: kill $t\bar{t}$
- no $\Delta \phi$ cut, $N_{jet} = 2$: smaller effect of JES on signal region

Fit setup

- likelihood fit to templates
- W/Z + jets: uncertainty on normalization of 20%
- $t\overline{t}$: 10% uncertainty on normalization
- WW/WZ left free
- QCD: 30% uncertainty on normalization
- systematics described as nuisance parameters

Fit after new selection:

JES and QCD estimation

- JER, W+jets, $t\overline{t}$: nuisance parameters
- JES and QCD are obtained without profiling
- toy experiments after profiling to estimate JES and QCD

Sum of electron and muon channels

Next steps

- go for the internal note with the analysis as it is -HCP?-
- move analysis on grid
- control each step of the analysis
- try other tools (quark-gluon tagging)
- try different cuts
- apply cuts to isolate the diboson peak with 2012 data