γ -ray spectroscopy with scintillator detectors

F. Camera Università di Milano – INFN sezione di Milano

OUTLINE

- Scintillators and LaBr₃:Ce
- Properties of large volume LaBr₃:Ce HECTOR+
- HECTOR+ measurement : Isospin Mixing in ⁸⁰Zr
- HECTOR+ measurement : PDR in ⁶⁴Fe
- HECTOR+ measurement : Inelastic scattering of ¹⁷O on stable nuclei
- Conclusions

BEFORE 2006

Scintillator Arrays - not for discrete γ spectroscopy

- Crystal Ball, Spin Spectrometer, Medea, Hector,

Scintillators as a bulk active volume

Scintillators for Anticompton Shields - Scintillators \Rightarrow yes/no information Scintillator Arrays as multiplicity filters - Σ energy

- Nordball
- \Rightarrow BaF₂ Ball
- GASP - Euroball
- \Rightarrow BGO Ball
- \Rightarrow BaF₂ Ball

Test for the Add Back technique with HPGe

- F. Camera et al NIM **A351**(1994)401-405

LaBr₃:Ce Detectors

2001 – Discovery - Applied Physics Letter 79(2001)1573

- ≈ 2005 1" x 1" Commercially available
- ≈ 2006 3" x 3" Commercially available
- ≈ 2007 3" x 6" Commercially available
- ≈ 2008 3.5" x 8" Commercially available
- The History of LaBr₃:Ce started 10 years ago
- The History of large volume LaBr₃:Ce started only 4-5 years ago

LaBr₃:Ce is the scintillator which has the best energy resolution (20 keV at 662 keV, a sub-nanosecond time resolution, almost perfect light yield proportionality and high efficiency (high density, effective 'Z' and large volume)

Nicolini et al Nucl. Instr. And Meth. A 582 (2007) 554–561 G.Knoll radiation Detection and Measurements pg 151

Characterization of Large Volume LaBr₃:Ce Detectors

- Rise time
- Pulse line-shape
- Count Rate
- Pulse distortion with γ-rays energy
- Linearity in energy
- Energy resolution and NON homogeneity
- High energy gamma rays
- Efficiency

The properties of <u>large volume</u> LaBr₃:Ce cannot be easily deduced from those of small crystals

- Long mean free path of scintillation light (enhance Self-absorption, longer rise time)
- Crystal non-homogeneities (change in light yield, energy resolution)
- Efficiency vs. high energy γ-rays
- High count rates
- Large dynamic range (0.1 30 MeV)
- Large surface PMT not 'ideal'

F.C.L. Crespi et al. Nucl. Instr. and Meth. A620 (2009) 520 Nicolini et al Nucl. Instr. And Meth. A 582 (2007) 554–561 S. Riboldi et al., IEEE NSS/MIC 2011 proc. AN. 6154296 pg.776-778 C.Boiano et al., IEEE NSS/MIC 2010 proc. AN 5873761, Pg 268-270 F.Quarati et al. Nucl. Instr. and Meth. A629 (2011) 157. A. Giaz, et al submitted to NIM

Characterization of Large Volume LaBr₃:Ce : Rise time

As energy resolution is the same in all these crystals (3-3.3% at 661 keV) self absorption inside the crystal is negligible

The time required to collect the scintillation light:

- \approx 4 ns \Rightarrow 1" x 1" scintillator
- \approx 7 ns \Rightarrow 3" x 3" scintillator
- \approx 14 ns \Rightarrow 3.5" x 8" scintillator

Characterization of Large Volume LaBr₃:Ce : Count Rate induced effects

The 898 keV peak centroid drifts less than 10 keV changing the rate from 1 to 250 KHz - as the gain decreases , we verified that it is a temperature C.R. induced effects The 898 keV peak energy resolution does not change with count rate

The signal have been digitized (8 bits 400 MHz bw 5 GHz Samp. Freq.) and analyzed

Note: not only the PMT but also the subsequent electronics, e.g. shaping amplifier, analog to digital converter, etc. may easily impair the LaBr₃:Ce detector performances, especially in case of high count rate of events and with lack of pile-up rejection

Characterization of Large Volume LaBr₃:Ce Detectors: Linearity in Energy - It is a PMT + Voltage divider effect -

- At 22.6 MeV the NON linearity is of the order of 3%
- PMT Linear response fluctuates between ± 1% from tube to tube
- A lower voltage garantee a linear response for γ -rays of higher energy

Characterization of Large Volume LaBr₃:Ce Detectors

Energy Spectra at 0.01 and 17.6 MeV

3.5" x 8" Large Volume LaBr₃:Ce

Internal radiation + ¹³³Ba and ¹³⁷Cs source

 7 Li+p = 8 Be target LiBO₂

Characterization of Large Volume LaBr₃:Ce Detectors

Energy Resolution

$$FWHM = \sqrt{a + bE + cE^2}$$

continuous red line

- $a \Rightarrow Electronic noise$
- $b \Rightarrow$ Poisson Statistics
- $c \Rightarrow$ Drift, Temperature, NON homogeneities

Unique Feature

LaBr₃:Ce detectors provide, at the same time, clean spectroscopic information from a few tens of keV up to tens of MeV, being furthermore able to clearly separate the full energy peak from the first escape one

This is particularly true for large volume detectors which have FEP efficiency for high energy γ -rays

Large volume LaBr₃:Ce detectors can perform spectroscopy of high energy γ -rays probably up to 30-40 MeV

HpGe detectors have excellent energy resolution but the small size of the crystal, the low density and Z_{eff} make them several time less efficient than large volume LaBr₃:Ce

Characterization of Large Volume LaBr₃:Ce Detectors: efficiency

1 detector

⁶⁰Co Source attached to the front face Sum peak technique GEANT Simulations Source at 20 cm

One large volume 3.5"x8" LaBr3:Ce detector at 20 cm from target has ~10% relative full energy peak efficiency for 10 MeV γ -rays.

A 10 detector large volume 3.5"x8" LaBr₃:Ce array placed 20 cm from the target has 1% absolute full energy peak efficiency for 10 MeV γ -rays

Physics Case

Study of the nuclear collective states

Measurements of the γ -decay from collective states

Measurement of low energy γ -rays (0-5 MeV) \Rightarrow Reaction Mechanism (ΔE) Measurement of high energy γ -rays (5-30 MeV) \Rightarrow Collective States ($\Delta E, \epsilon$) Background and neutron rejection

- \Rightarrow Use of Radioactive Beams (Δt)

HECTOR+ Array

- High efficiency portable scintillator detector array
- 8 Large Volume BaF₂ Detectors (14 x 17 cm)
- 36 Small Volume BaF₂ Detectors
- <u>10 large Volume LaBr₃:Ce detectors (9 x 20 cm)</u>

A LaBr₃:Ce array, is capable to work in a standalone configuration but, when coupled to a radiation detection system, increases the efficiency and makes much more powerful the physics program of the detection system.

HECTOR+ has already measured in several laboratories

coupled to HPGe arrays

- AGATA @ LNL Low Lying pygmy and quadrupole state isospin mixing in ⁸⁰Zr
- AGATA @ GSI Pygmy resonance on ⁶⁴Fe
- AGATA @ LNL Low Lying Pygmy and GQR states
- coupled to LAND @ GSI
- coupled CACTUS @ OSLO
- RIKEN, DEBRECEN.

HECTOR+ Array

- High efficiency portable scintillator detector array
- 8 Large Volume BaF₂ Detectors (14 x 17 cm)
- 36 Small Volume BaF₂ Detectors
- <u>10 large Volume LaBr₃:Ce detectors (9 x 20 cm)</u>

A LaBr₃:Ce array, is capable to work in a standalone configuration but, when coupled to a radiation detection system, increases the efficiency and makes much more powerful the physics program of the detection system.

HECTOR+ has already measured in several laboratories

- coupled to HPGe arrays
 - AGATA @ LNL Low Lying pygmy and quadrupole state isospin mixing in ⁸⁰Zr
 - AGATA @ GSI Pygmy resonance on ⁶⁴Fe
 - AGATA @ LNL Low Lying Pygmy and GQR states
- coupled to LAND @ GSI
 coupled CACTUS @ OSLO
 RIKEN, DEBRECEN.
 preliminar results
 LaBr₃:Ce & HpGe

HECTOR⁺ Array

AGATA-HECTOR⁺ at LNL

Isospin Mixing in N=Z Nucleus ⁸⁰Zr at Med-High Temperature

AGATA@LNL Experiment - May 2011

We used the first step GDR γ -decay in CN :

- 0 \Rightarrow 0 transition is forbidden in E1 decay in N=Z I=0 nuclei

- Coulomb Spreading Width $\Gamma_{c} \approx \Gamma_{IAS}$
- Isospin mixing coefficient a_2 at T>0,J=0 and J=<J>_{CN}
- Isospin mixing coefficient a_2 at T=0 and J=0

$$\left(\alpha^{\text{lo+1}1}\right)^{2} = \frac{1}{|_{0}|^{+1}} \frac{\widetilde{\Gamma}_{\text{IAS}}(E^{*})}{\widetilde{\Gamma}_{c}(E^{*}) + \widetilde{\Gamma}_{M}(E^{*})}.$$

- \Rightarrow beta decay description - \Rightarrow CKM matrix Colo et al PRC R 52(1995)R1175 Sagawa et al PLB B 444 1998. 1–6

A.Corsi et al. PRC 84, 041304(R) (2011)

Very Preliminar Analysis

<u>Preliminary fit results</u> \rightarrow ⁸⁰Zr

Fit procedure:
▶ E_{GDR} fixed to 16.2 MeV.
▶ Γ fixed to 7 MeV

 $\succ \chi^2$ test to extract the Coloumb Spreading width Γ^{\downarrow}

Preliminary fit result $\Rightarrow \Gamma^{\downarrow}=12\pm 3 \text{ keV}$ to be compared with $\Gamma^{\downarrow}=10\pm 3 \text{ keV}$

Thank to S.Ceruti

Pygmy Dipole Resonance in ⁶⁴Fe (November 2012)

Collective oscillation of neutron skin against the core

- Level of collectivity ?
- How (collective) properties change with n?
- How isospin changes mean field ?
- In exotic nuclei: does PDR strength exist also below neutron threshold ?
- No High resolution measurements available
- Effect of deformation ?

P. Adrich et al., Phys. Rev. Lett. 95, 132501 (2005)J. Gibelin et al., Phys. Rev. Lett. 101, 212503 (2008)O.Wieland et al. PRL 102, 092502 (2009) references therein and cited by

Analysis in progress

Calibration with PuC source

⁶⁴Fe at 400 MeV/u on Pb target

Thanks to R. Avigo and O.Wieland

Analysis in progress TOF Spectra

Thanks to R. Avigo and O.Wieland

LaBr₃:Ce at 90° ⁶⁴Fe incoming

LaBr₃:Ce at 142° ⁶⁴Fe incoming

Inelastic scattering of ¹⁷O @ 20 MeV/u on ¹²⁴Sn (²⁰⁸Pb+¹⁴⁰Ce) + γ -rays

AGATA@LNL Experiment - December 2011

Good efficiency for low-med-high energy γ -rays $-\gamma-\gamma$ coincidence

High energy resolution from HpGe and good energy resolution from LaBr₃:Ce - 'clean' gates for coincidences

Thanks to L. Pellegri and F.C.L. Crespi

Analysis in progress

Inelastic scattering of ¹⁷O @ 20 MeV/u on ²⁰⁸Pb + γ -rays in coincidence

TKE (in Silicon) vs E(LaBr₃:Ce) Gate on ¹⁷O (inelastic scattering) LaBr₃:Ce spectrum - gated

Condition on direct γ -decay to g.s

Thanks to L. Pellegri and F.C.L. Crespi

Inelastic scattering of ¹⁷O @ 20 MeV/u on ¹²⁴Sn + γ-rays in coincidence Analysis in progress

AGATA Spectrum (backgruond subtracted) with a gate on 1132 keV in $LaBr_3$:Ce

Thanks to L. Pellegri and F.C.L. Crespi

Conclusions

- LaBr₃:Ce scintillators are a breakthrough in detector technology.
 - Excellent timing properties and ...
 - They can provide also spectroscopic data between10 keV up to 22.6 MeV.
- HECTOR+ is a new portable array based on large volume LaBr₃:Ce detectors
- HECTOR+ is capable to work in a standalone configuration but, when coupled to a radiation detection system, increases the efficiency and makes much more powerful the physics program of the detection system.
- HECTOR+ or part of it has already measured in beam
 - coupled with the AGATA demonstrator at LNL and PRESPEC@GSI
 - Isospin Mixing in ⁸⁰Zr
 - PDR on ⁶⁴Fe
 - Elastic scattering on ¹⁷O on ²⁰⁸Pb and ¹²⁴Sn
 - coupled with LAND, CACTUS, ... or in standalone mode
- Several brand new scintillator are appearing (Srl₂, CeBr₃, CLYC, GAGG:Ce, GYGAG, CLLB, CLLC,....)

HECTOR+ team in Milano

AGATA@LNL and PRESPEC-AGATA@GSI teams

DEBRECEN, LAND, OSLO, RIKEN, ... teams

Thank you for the attention