Medium-mass nuclei from chiral EFT interactions

Vittorio Somà (TU Darmstadt \& EMMI)

Nuclear Structure Physics with Advanced Gamma-Detector Arrays Padova, 10 June 2013

Towards a first-principle description of nuclei

© Ab initio methods
\rightarrow Light systems with good precision
$\rightarrow \rightarrow$ First ab initio calculations of reactions
\rightarrow Ab initio frontier: medium-mass isotopic chains
(2) Great progress in the last few years

- Ab initio NN

Towards a first-principle description of nuclei

Light nuclei

Medium-mass nuclei

Miscroscopic SM,

Configuration interaction limited to small valence / model spaces

Medium-mass nuclei

GF, CC, IM-SRG,

Expansion schemes allow to reach heavier systems

Ab initio Green's function approach

© Only input: NN+3N interactions
Aim: parameter-free predictions of nuclear properties
\rightarrow Essential for exotic nuclei
\rightarrow Theoretical error estimates possible (and mandatory)
\boldsymbol{Q} Diagrammatic expansion of the solution
\rightarrow Beyond perturbation theory, controlled and improvable
\rightarrow Current scheme: $\operatorname{ADC}(3)$
(NN potential: chiral N3${ }^{3} \mathrm{LO}(500 \mathrm{MeV})$ SRG-evolved to $2.0 \mathrm{fm}^{-1}$
[Entem \& Machleidt 2003]
(3 N potential: chiral $\mathrm{N}^{2} \mathrm{LO}(400 \mathrm{MeV})$ SRG-evolved to $2.0 \mathrm{fm}^{-1}$ [Navrátil 2007]
$\rightarrow \rightarrow$ Fit to three- and four-body systems only
\rightarrow Modified cutoff to reduce induced 4 N contributions [Roth et al. 2012]

One-nucleon spectral function

© Independent-particle picture

Saclay data for ${ }^{16} \mathrm{O}\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ [Mougey et al. 1980]
Spectral function

$$
\left.S_{p}^{-}(\omega) \equiv \sum_{k}\left|\left\langle\psi_{k}^{A-1}\right| a_{p}\right| \psi_{0}^{A}\right\rangle\left.\right|^{2} \delta\left(\omega-\left(E_{0}^{A}-E_{k}^{A-1}\right)\right)
$$

\rightarrow Distribution of momenta and energies

Inside the Green's function

Separation energy spectrum

$$
G_{a b}^{11}(\omega)=\sum_{k}\left\{\frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k *}}{\omega-\omega_{k}+i \eta}+\frac{\overline{\mathcal{V}}_{a}^{k *} \bar{\nu}_{b}^{k}}{\omega+\omega_{k}-i \eta}\right\}
$$

Lehmann representation

$$
\begin{array}{ll}
\text { where } & \left\{\begin{array}{l}
\mathcal{U}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| a_{a}^{\dagger}\left|\Psi_{0}\right\rangle \\
\mathcal{V}_{a}^{k *} \equiv\left\langle\Psi_{k}\right| \bar{a}_{a}\left|\Psi_{0}\right\rangle
\end{array}\right. \\
\text { and } & \left\{\begin{array}{l}
E_{k}^{+(A)} \equiv E_{k}^{A+1}-E_{0}^{A} \equiv \mu+\omega_{k} \\
E_{k}^{-(A)} \equiv E_{0}^{A}-E_{k}^{A-1} \equiv \mu-\omega_{k}
\end{array}\right.
\end{array}
$$

© Spectroscopic factors

$$
\begin{aligned}
& \left.S F_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}^{\dagger}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{U}_{a}^{k}\right|^{2} \\
& \left.S F_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}}\left|\left\langle\psi_{k}\right| a_{a}\right| \psi_{0}\right\rangle\left.\right|^{2}=\sum_{a \in \mathcal{H}_{1}}\left|\mathcal{V}_{a}^{k}\right|^{2}
\end{aligned}
$$

[figure from J. Sadoudi]

Around oxygen

d Consistent description of $Z=7,8,9$ isotopic chains

[Cipollone et al. arXiv:1303.4900]
\rightarrow 3NF crucial for reproducing driplines
$\rightarrow d_{3 / 2}$ raised by genuine 3NF
" \rightarrow cf. microscopic shell model [Otsuka et al. (2010)]

Single-nucleon transfer in the oxygen chain

A Analysis of ${ }^{14} \mathrm{O}(d, t){ }^{13} \mathrm{O}$ and ${ }^{14} \mathrm{O}\left(d,{ }^{3} \mathrm{He}\right){ }^{13} \mathrm{~N}$ transfer reactions @ SPIRAL

\rightarrow Overlaps functions and cross sections from GF
$\rightarrow R_{s}$ independent of asymmetry
[Flavigny et al. PRL 110 (2013)]

Going open-shell: Gorkov-Green's functions

(2) Standard expansion schemes fail to account for pairing correlations
\rightarrow Limited to to doubly-closed-shell ± 1 and ± 2 nuclei
Gorkov-Green's functions
\rightarrow Address explicitly the non-perturbative physics of Cooper pairs
\rightarrow Formulate the expansion scheme around a Bogoliubov vacuum
\rightarrow From few tens to hundreds of medium-mass open-shell nuclei
(1) Anomalous diagrams in the self-energy expansion

[Somà, Duguet \& Barbieri PRC 84 (2011)]

Calcium isotopic chain

(2) First $a b$ initio calculation of the whole Ca chain with $\mathrm{NN}+3 \mathrm{~N}$ forces
\rightarrow 3NF bring energies close to experiment
$\rightarrow \rightarrow$ Induced 3NF and full 3NF investigated

Calcium isotopic chain

\rightarrow Original 3NF correct the energy curvature
\rightarrow Good agreement with IM-SRG (quantitative when $3^{\text {rd }}$ order included)

Two-neutron separation energies

(Neutron-rich extremes of the nuclear chart
$\sim \rightarrow$ Good agreement with measured S2n
\rightarrow Towards a quantitative $a b$ initio description of the medium-mass region

Spectral strength distribution

Dyson $2^{\text {nd }}$ order

Gorkov $1^{\text {st }}$ order (HFB)
Fragmentation

Static pairing
\qquad

Dynamical
fluctuations

Gorkov $2^{\text {nd }}$ order

Shell structure evolution

$\boldsymbol{\otimes}$ ESPE collect fragmentation of "single-particle" strengths from both $\mathrm{A} \pm 1$ $\epsilon_{a}^{c e n t} \equiv h_{a b}^{c e n t} \delta_{a b}=t_{a a}+\sum_{c d} \bar{V}_{a c a d}^{N N} \rho_{d c}^{[1]}+\sum_{c d e f} \bar{V}_{a c d a e f}^{N N N} \rho_{e f c d}^{[2]} \equiv \sum_{k} \mathcal{S}_{k}^{+a} E_{k}^{+}+\sum_{k} \mathcal{S}_{k}^{-a} E_{k}^{-}$
[Baranger 1970, Duguet and Hagen 2011]

Knockout \& transfer experiments

(Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

			(theo.)			(expt.)		(expt.)	
Isotopes	$l j^{\pi}$	$\mathrm{Sn}(\mathrm{MeV})$	$\Delta S(\mathrm{MeV})$	$\mathrm{SF}(\mathrm{LB}-\mathrm{SM})$	$\mathrm{SF}(\mathrm{JLM}+\mathrm{HF})$	$R s(\mathrm{JLM}+\mathrm{HF})$	$\mathrm{SF}(\mathrm{CH} 89)$	$R s(\mathrm{CH} 89)$	
${ }^{34} \mathrm{Ar}$	$s 1 / 2^{+}$	17.07	12.41	1.31	0.85 ± 0.09	0.65 ± 0.07	1.10 ± 0.11	0.84 ± 0.08	
${ }^{36} \mathrm{Ar}$	$d 3 / 2^{+}$	15.25	6.75	2.10	1.60 ± 0.16	0.76 ± 0.08	2.29 ± 0.23	1.09 ± 0.11	
${ }^{46} \mathrm{Ar}$	$f 7 / 2^{-}$	8.07	-10.03	5.16	3.93 ± 0.39	0.76 ± 0.08	5.29 ± 0.53	1.02 ± 0.10	

[Lee et al. 2010]

	$\mathrm{Sn}(\mathrm{MeV})$	$\Delta \mathrm{S}(\mathrm{MeV})$	SF
${ }^{34} \mathrm{Ar}$	33.0	18.6	1.46
${ }^{36} \mathrm{Ar}$	27.7	7.5	1.46
${ }^{46} \mathrm{Ar}$	16.0	-22.3	5.88

${ }^{34} \mathrm{Ar}$	22.4	15.5	1.56
${ }^{36} \mathrm{Ar}$	15.3	7.2	1.54
${ }^{46} \mathrm{Ar}$	6.5	-15.7	6.64

Knockout \& transfer experiments

$\boldsymbol{\sigma}$ Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

Conclusions and outlook

$\xrightarrow{\prime} \rightarrow$ Ab initio description of driplines around O
$\rightarrow \rightarrow$ One-nucleon transfer reactions
\rightarrow GGF: Manageable route to degenerate systems
$\xrightarrow{\prime} \rightarrow$ Towards medium-mass isotopic chains
$\rightarrow 2 \mathrm{NF}+3 \mathrm{NF}$: towards predictive calculations

© Improvement of the self-energy expansion
© Proper coupling to the continuum
© Formulation of particle-number restored Gorkov theory
© Towards consistent description of structure and reactions

Acknowledgements

Collaborators:

Carlo Barbieri (University of Surrey, UK) Andrea Cipollone (University of Surrey, UK)

Thomas Duguet (CEA Saclay, France)
Petr Navrátil (TRIUMF, Canada)

Funding:

German Research Foundation

Computing resources:
Centre de Calcul Recherche et Technologie

