Medium-mass nuclei from chiral EFT interactions

Vittorio Somà (TU Darmstadt & EMMI)

Nuclear Structure Physics with Advanced Gamma-Detector Arrays Padova, 10 June 2013

Towards a first-principle description of nuclei

✿ Ab initio methods

- Light systems with good precision
- → First *ab initio* calculations of reactions
- *Ab initio* frontier: medium-mass isotopic chains
- Great progress in the last few years

Only input: NN+3N interactions

Aim: parameter-free predictions of nuclear properties

- ➡ Essential for exotic nuclei

Oiagrammatic expansion of the solution

- Beyond perturbation theory, controlled and improvable
- → Current scheme: ADC(3)

♥ NN potential: chiral N³LO (500 MeV) SRG-evolved to 2.0 fm⁻¹

[Entem & Machleidt 2003]

- Fit to three- and four-body systems only
- Modified cutoff to reduce induced 4N contributions [Roth et al. 2012]

One-nucleon spectral function

Saclay data for ¹⁶O(e,e'p) [Mougey *et al.* 1980]

Spectral function

$$\left(S_p^-(\omega) \equiv \sum_k \left| \langle \psi_k^{A-1} | a_p | \psi_0^A \rangle \right|^2 \, \delta(\omega - (E_0^A - E_k^{A-1})) \right)$$

→ Distribution of momenta and energies

Separation energy spectrum

$$G_{ab}^{11}(\omega) = \sum_{k} \left\{ \frac{\mathcal{U}_{a}^{k} \mathcal{U}_{b}^{k*}}{\omega - \omega_{k} + i\eta} + \frac{\bar{\mathcal{V}}_{a}^{k*} \bar{\mathcal{V}}_{b}^{k}}{\omega + \omega_{k} - i\eta} \right\}$$

Lehmann representation

where

 $\begin{cases} \mathcal{U}_a^{k*} \equiv \langle \Psi_k | a_a^{\dagger} | \Psi_0 \rangle \\ \mathcal{V}_a^{k*} \equiv \langle \Psi_k | \bar{a}_a | \Psi_0 \rangle \end{cases}$

and

$$\begin{bmatrix} E_k^{+\,(A)} \equiv E_k^{A+1} - E_0^A \equiv \mu + \omega_k \\ E_k^{-\,(A)} \equiv E_0^A - E_k^{A-1} \equiv \mu - \omega_k \end{bmatrix}$$

Spectroscopic factors

$$SF_{k}^{+} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a}^{\dagger} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{U}_{a}^{k} \right|^{2}$$
$$SF_{k}^{-} \equiv \sum_{a \in \mathcal{H}_{1}} \left| \langle \psi_{k} | a_{a} | \psi_{0} \rangle \right|^{2} = \sum_{a \in \mathcal{H}_{1}} \left| \mathcal{V}_{a}^{k} \right|^{2}$$

[figure from J. Sadoudi]

Around oxygen

• Consistent description of Z = 7, 8, 9 isotopic chains

Single-nucleon transfer in the oxygen chain

• Analysis of ${}^{14}O(d, t) {}^{13}O$ and ${}^{14}O(d, {}^{3}He) {}^{13}N$ transfer reactions @ SPIRAL

Reaction	E^* (MeV)	J^{π}	R ^{HFB} (fm)	<i>r</i> ₀ (fm)	$C^2 S_{exp}$ (WS)	$\begin{array}{c} C^2 S_{\rm th} \\ 0 p + 2 \hbar \omega \end{array}$	R _s (WS)	$C^2 S_{exp}$ (SCGF)	$C^2 S_{\text{th}}$ (SCGF)	R _s (SCGF)
$^{14}O(d, t)$ ^{13}O	0.00	$3/2^{-}$	2.69	1.40	1.69 (17)(20)	3.15	0.54(5)(6)	1.89(19)(22)	3.17	0.60(6)(7)
14 O (<i>d</i> , 3 He) 13 N	0.00	$1/2^{-}$	3.03	1.23	1.14(16)(15)	1.55	0.73(10)(10)	1.58(22)(2)	1.58	1.00(14)(1)
	3.50	$3/2^{-}$	2.77	1.12	0.94(19)(7)	1.90	0.49(10)(4)	1.00(20)(1)	1.90	0.53(10)(1)
$^{16}O(d, t)$ ^{15}O	0.00	$1/2^{-}$	2.91	1.46	0.91(9)(8)	1.54	0.59(6)(5)	0.96(10)(7)	1.73	0.55(6)(4)
16 O (<i>d</i> , 3 He) 15 N [19,20]	0.00	$1/2^{-}$	2.95	1.46	0.93(9)(9)	1.54	0.60(6)(6)	1.25(12)(5)	1.74	0.72(7)(3)
	6.32	$3/2^{-}$	2.80	1.31	1.83(18)(24)	3.07	0.60(6)(8)	2.24(22)(10)	3.45	0.65(6)(3)
$^{18}O(d, {}^{3}\text{He}) {}^{17}N$ [21]	0.00	$1/2^{-}$	2.91	1.46	0.92(9)(12)	1.58	0.58(6)(10)			

- → Overlaps functions and cross sections from GF
- \implies R_s independent of asymmetry

[Flavigny et al. PRL 110 (2013)]

Going *open-shell*: Gorkov-Green's functions

- Standard expansion schemes fail to account for pairing correlations
 Limited to to doubly-closed-shell ± 1 and ± 2 nuclei
- Gorkov-Green's functions
 - Address explicitly the non-perturbative physics of Cooper pairs
- Anomalous diagrams in the self-energy expansion

[Somà, Duguet & Barbieri PRC 84 (2011)]

Calcium isotopic chain

• First *ab initio* calculation of the whole Ca chain with NN + 3N forces

- → 3NF bring energies close to experiment
- → Induced 3NF and full 3NF investigated

Calcium isotopic chain

- ---- Original 3NF correct the energy curvature
- Good agreement with IM-SRG (quantitative when 3rd order included)

Neutron-rich extremes of the nuclear chart

- Good agreement with measured S2n

Shell structure evolution

Second ESPE collect fragmentation of "single-particle" strengths from both A±1

$$\epsilon_{a}^{cent} \equiv h_{ab}^{cent} \delta_{ab} = t_{aa} + \sum_{cd} \bar{V}_{acad}^{NN} \rho_{dc}^{[1]} + \sum_{cdef} \bar{V}_{acdaef}^{NNN} \rho_{efcd}^{[2]} \equiv \sum_{k} S_{k}^{+a} E_{k}^{+} + \sum_{k} S_{k}^{-a} E_{k}^{-}$$
[Baranger 1970, Duguet and Hagen 2011]
Separation energies

$$(Centroids)$$

$$($$

Solution removal from proton- and neutron-rich Ar isotopes @ NSCL

				(theo.) (expt.)		(expt.)		
Isotopes	lj^{π}	Sn(MeV)	ΔS (MeV)	SF(LB-SM)	SF(JLM + HF)	Rs(JLM + HF)	SF(CH89)	<i>Rs</i> (CH89)
³⁴ Ar	$s1/2^{+}$	17.07	12.41	1.31	0.85 ± 0.09	0.65 ± 0.07	1.10 ± 0.11	0.84 ± 0.08
³⁶ Ar	$d3/2^{+}$	15.25	6.75	2.10	1.60 ± 0.16	0.76 ± 0.08	2.29 ± 0.23	1.09 ± 0.11
⁴⁶ Ar	$f7/2^{-}$	8.07	-10.03	5.16	3.93 ± 0.39	0.76 ± 0.08	5.29 ± 0.53	1.02 ± 0.10

[Lee *et al.* 2010]

Sp

	Sn (MeV)	ΔS (MeV)	SF		
³⁴ Ar ³⁶ Ar ⁴⁶ Ar	33.0 27.7 16.0	18.6 7.5 -22.3	1.46 1.46 5.88	Gorkov GF NN	$\Delta S = Sn -$
³⁴ Ar ³⁶ Ar ⁴⁶ Ar	22.4 15.3 6.5	15.5 7.2 -15.7	1.56 1.54 6.64	Gorkov GF NN + 3N	

♥ Neutron removal from proton- and neutron-rich Ar isotopes @ NSCL

Conclusions and outlook

- *Ab initio* description of driplines around O
- One-nucleon transfer reactions
- GGF: Manageable route to degenerate systems
- → 2NF + 3NF: towards predictive calculations

- Improvement of the self-energy expansion
- Proper coupling to the continuum
- Formulation of particle-number restored Gorkov theory
- Towards consistent description of structure and reactions

Collaborators:

Carlo Barbieri (University of Surrey, UK) Andrea Cipollone (University of Surrey, UK)

Thomas Duguet (CEA Saclay, France)

Petr Navrátil (TRIUMF, Canada)

Funding:

German Research Foundation

Computing resources:

Centre de Calcul Recherche et Technologie

UNIVERSITY OF

