

The GALILEO γ–ray array

Călin A. Ur INFN Padova

The Legnaro National Laboratories

The Accelerators of LNL

Heavy Ion Accelerators

ALPI SC Linac

Nuclear Physics Experiments

Heavy Ion Accelerators

Schematic Layout of the TAP Complex

TAP – Beam Energies

TAP – Beam Currents

The GASP Array

GASP 1992 - 2012

40 HPGe (80%) + AC ε_{ph} (1.3MeV) ~ 3% (@ 27 cm) I ~ 5.8% (@ 22 cm) II P/T ~ 60%

BGO multiplicity filter – 80 elements

Study of high–spin states populated in fusion–evaporation reactions coupled to ancillary detectors such as EUCLIDES, Plunger, n-Ring, RFD, LuSiA

March 6 – 12 last experiment

April 4 – official shutdown

Dismounting the GASP Array

30 GASP detectors @ 22.5cm 5 5 5 5 5 5 29° 51° 59° 121° 129° 151° 10 triple cluster (EB capsules) @ 24cm 90°

European Collaboration

call for LoI in 2009

take advantage of the recent technical developments for AGATA preamplifiers, digital sampling, preprocessing, DAQ → high counting rates (30–50 kHz/det)

use of existing detectors EB cluster detectors capsules GASP detectors → high photopeak efficiency

ε_{ph} ~ 8% P/T ~ 50%

use beam facilities at LNL Tandem, ALPI, PIAVE – stable SPES – RIB

 \rightarrow production of new nuclei

GALILEO – Pb Collimator

GALILEO – Location

GALILEO in Hall II

GALILEO in Hall II

GALILEO in Hall II

GTC – GALILEO Triple Cluster Detector

EB cluster detectors 7 encapsulated n–type HPGe detectors FWHM < 2.4 keV @ 1332.5 keV $\epsilon_{int} \sim 60\%$

GTC – GALILEO Triple Cluster Detector

GTC – GALILEO Triple Cluster Detector

at 90°

10 GASP HPGe (80%) @ 22 cm $\rightarrow \epsilon_{ph} \sim 1.5\%$

10 triple cluster detectors (30 HPGe 60%) @ 24 cm $\rightarrow \epsilon_{ph} \sim 4.0\%$

+

higher granularity smaller solid angle covered by one capsule

GTC – Anti–Compton Shields

construction of the GTC AC shields with the individual crystals of the original EB cluster shields

New design of the GTC AC shield

GTC – Anti–Compton Shields

 one EUROBALL anti-Compton shield transferred to Legnaro
contacted Cyberstar Grenoble for information on the mechanical mounting of the casing

GTC + Anti–Compton Shields

GALILEO Phase Zero

GALILEO – Electronics

a fast low-noise charge sensitive preamplifier based on the core-type AGATA preamplifier used for both tapered and triple cluster detectors 80 preamplifiers already available

Digi-opt12: 12-channel **14**/16-bit **100**/125-MS/s digitizer with optical output for GALILEO/AGATA power consumption < 10 W / board Prototypes under test

new low-power and low-cost readout and preprocessing PCI-express boards developed for GALILEO and AGATA

Prototypes under test

GALILEO – EDAO

First tests in October 2012

Warm FET&RF

FWHM = 1.25 keV (C_{det} =30 pF)

GALILEO – EDAO

GALILEO – RO&Preprocessing

GALILEO – RO&Preprocessing

GALILEO – EDAQ

Digital Treatment of AC Signals

3.2-Tnt U	ISB Contro	l : 3 cai	rd(s) on t	he USB bus							C
INT cards	Oscillogr	ams of c	ard n°:02	15 Energy I	histogram	ns Options					
Deter	t TNT card	s on BHS		Card : p*021	5 🔻	CAEN/IPHC/CNRS	3 TNT2-03/2006, oper. . 09/2004	ating in :USB 2			
Detec		5 011 002	·	Card. In Ozr		VII-TNT2 :V.2.0 3	EEPROMS - 07/2007				
Parameters of	of selected ca	ard 1/3	Parameter	s 2/3 Parama	eters 3/3				Card version: Tr	t2	
Card input	s:								Output		
	Common	Diff.	ADC bus	Gain analog.	Offset	Kirk's phaser	Activate E calculation	n&r Readout oscillogran			
Input 1:			On	[0-2MeV]	22000	30		v	3-Jordanov:trapezoid_		
Input 2.		++	On	[0-2MeV]	0	1		r r	= 0-Card input 3	· · · · ·	
Input 4:			On	[0-2MeV]	0	1		V	D-Card input 4	-	
		AD66	45-100Mhz			= 10.0 ns					
Triaaer :						- 10.0110	Acquisition m	ode :	Others parameters		
On	Type Thr	esh ND	iff Integ	+sinne Dela	v Gain	Shift NIM in	Energy histogra	amer	Re-init counters: 655	35	l
input 1: 🗾	External -1	00 2	20	80 n	s 1/2	10 ns 1			Enable all 4 LVDS outputs	V	1
nput 2: 🗾	External -3	00 2	20	80 n	s 1/2	10 ns 1	Uscillogram:	= 20 up	Enable all 4 LVDS inputs	2	l
3 2 Tet II	SB Contro		d(c) on t	he LISB hur	e 10	11100 1	Nurp <u>eler 10.0</u> 18	1 - 21118			ŕ
J. Z. The O	Occiller			E Eporeul	vietegrop	Ontiono					Ľ
NICalus	Oscillogi		.aiuii .02	Ellergy	listoyi ali	is Options					-
					Ener	gy histogra	ms: card n°0215	5			
County									Channel 1: 111268 0 co.	ints(4%)	
.000	5								Channel 2: 115548.0 cou	ints(0%)	
									Channel 3: 0 counts		
900									Channel 4: 0 counts		
800 -											
700-											
- 003											
000											
500-										•	
400 -											
300-											
200-											
200											
100											
0									+ + +		
	1,000	2,000	3,000	4,000	5,000	6,000 Ene	7,000 8,000	9,000 10,000 *	11,000 12,000 13,000		
							, g) 101010				
					_		_ √Visualization n	eeds: iqnore special bits? ¬			
			Ca	incel Zoom			ADC overflo	w bit b7:			
ut 1:	2845	Hit/s	Card :	n°0:	215 🔫]	(Tnt2D) Veto	bit b6:			
ut 2:	2845	lit/s	Show a	at	1 th	USB packet	Ext val bit b5		Show a spect	ra	
ut 3:	00000 H	Hit/s	Constru	uct with 1 USB p	acket ever	y 1	Pile up bit b4	:	Snapshot		
.ut 4:	00000	lit/s	Y scale	e Log 📃							
anagement	t of acquisi	tion data	:			Angel	icition	Selected card, on USB	bus:		
Save to file						Acqu	ISICION	Bytes received :	0	00	
						The characteristic	all eards	Energy bytes received:	3.179.008 7	4.47 KB/s	
						W Stop	Jan carus	Total bytes received from			
-								all cards:	3.179.008		
] Visualize								Backup dir : D:\Test\DataTE	ST\20130522 60Co two cards		1
								2 Hole	0.00	it	1
								. i net	Qu		

CAEN N1728 (TNT2) Trigger: Ge detector AC shield: acquired as slave matrix: $E\gamma(Ge) vs E\gamma(AC)$ cut on $E\gamma(AC)$ at < 50 keV \rightarrow P/T~50%

AGATA High Counting Rate Test

- The detection efficiency of AGATA is, so far, provided by a small number of crystals.
- Experiments want to collect big statistics → need to run at <u>high singles rates (> 50 kHz)</u>?
- Digital Signal Processing allows to work at rates "impossible" with analogue electronics.
- Under these «extreme» conditions, the performance of the detectors is still acceptable.

 A limit exists, due to pileup of the signals which exhausts the dynamical range of the FADC. Can counteract this by reducing the gain of the preamplifiers, but then energy resolution worsens also at low counting rate.

F.Recchia, D.Bazzacco

Digital Treatment of AC Signals

Collaborators

- GAMMA group
 - INFN Padova, Legnaro, Milano, Firenze
- Mechanical design and production
 - Technical Service INFN Padova, Mechanical workshops INFN Padova, Legnaro, Milan
 - C.Fanin, M.Turcato, M.Rampazzo, M.Romanato, L.Ramina, D.Conventi, S.Coelli, F.Tommasi
- Electronics developments
 - Nuclear physics groups INFN Padova and Milan, Computing service INFN Legnaro
 - D.Bazzacco, M.Bellato, A.Pullia, D.Bortolato, R.Isocrate, G.Rampazzo, L.Berti
- Vacuum, LN₂ filling systems, cabling
 - Users Service INFN Legnaro, Nuclear physics group & Electronic workshop INFN Padova
 - D.Rosso, L.Costa, P.Cocconi, R.Menegazzo, M.Nicoletto, M.Bettini
- Ancillary detectors integration
 - Nuclear physics group INFN Milan, Legnaro, IFJ PAN Cracow, Computing service INFN Legnaro
 - S.Brambilla, N.Toniolo, P.Bednarczyk, J.J.Valiente Dobon
- Beam line design
 - Accelerator Division INFN Legnaro, Nuclear physics group INFN Legnaro
 - G.Bisoffi, A.Pisent, M.Comunian, J.J.Valiente Dobon
- Monte Carlo simulations
 - Nuclear physics group INFN Padova
 - E.Farnea
- DAQ
 - Computing service INFN Legnaro
 - G.Maron, M.Gulmini, N.Toniolo, L.Berti

EPPUR SI MUOVE !

Outlook

- GALILEO a new gamma–ray array for LNL
 - stable beams from TAP
 - RIBs from SPES
- Combines
 - old detectors from GASP and EUROBALL
 - new EDAQ based on the AGATA experience
- for improved specification as compared to GASP