



## Coulomb excitation of reaccelerated <sup>208,210</sup>Rn and <sup>206</sup>Po beams

#### Tuomas Grahn NSP13 – Padova, 10-12 June 2013



## Neutron-deficient trans-Pb region



## Neutron-deficient trans-Pb region

- Relative high-*j* proton singleparticle orbital (*j*=9/2) dominates the structure - seniority v can be regarded as a good quantum number.
- In the trans-Pb nuclei with  $120 \le N \le 128$  the neutrons occupy high n, low  $\ell$  orbitals and therefore they should have weaker interactions with the  $1h_{9/2}$  protons. This implies that the seniority can be preserved.
- Motivation: to map the boundaries of seniority regime and collectivity





# N=124,126 isotones in the trans-Pb region







#### N=122 isotones







TULEVAISUUDESSA

## **ISOLDE** at CERN

1.4 GeV protons from CERN PS-booster bombard thick targets. Radioactive atoms diffuse out of the heated target. Chemical and physical separation and purification produce rare isotope beams for re-acceleration.







JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

## **REX-ISOLDE** at CERN





JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

#### MINIBALL Coulomb excitation setup

- MINIBALL γ-ray spectrometer (8 triple Ge clusters, six-fold segmented) surrounding a target.
- CD Si detector for recoil detection (16 annular strips).







TULEVAISUUDESSA

HELSINKI INSTITUTE OF PHYSICS





#### Particle gated y-ray spectrum



#### Particle gated y-ray spectrum



TULEVAISUUDESSA

HELSINKI INSTITUTE OF PHYSICS

## Coulomb excitation analysis

- Coulomb excitation code Gosia2: χ<sup>2</sup>
   minimisation of *calculated* and *measured* γ-ray intensities
- Simultaneous minimisation of *target* and projectile excitations
- Quadrupole moment of the 2<sup>+</sup> state assumed to be zero



#### Structure of the 2<sup>+</sup> states in <sup>206</sup>Po and <sup>208,210</sup>Rn

<sup>206</sup>Po: 
$$B(E2;2^+\rightarrow 0^+) \approx 7$$
 W.u.  
<sup>208</sup>Rn:  $B(E2;2^+\rightarrow 0^+) \approx 11$  W.u.  
<sup>210</sup>Rn:  $B(E2;2^+\rightarrow 0^+) \approx 16$  W.u.

- The 6<sup>+</sup> and 8<sup>+</sup> states have been associated as pure members of πh<sub>9/2</sub> multiplet.
- The 2<sup>+</sup> state is more complicated, possibly a mixture of πh<sub>9/2</sub> and vf<sub>5/2</sub> components.
- Interpretation in progress...

References:

W.J. Triggs et al. NPA 395, 274 (1983) A.R. Poletti et al. NPA 380, 335 (1982) A. Zemel & J. Dobes PRC 27, 2311 (1983)



## B(E2)-value systematics, N=122







TULEVAISUUDESSA

### B(E2)-value systematics







TULEVAISUUDESSA

## Summary & outlook

- Previously unknown B(E2;2+→0+) values have been measured in the neutron-deficient trans-Pb region at REX-ISOLDE
- <sup>208</sup>Po and <sup>212</sup>Rn studies pending
- Heavy radioactive beams required, only possible at ISOLDE
- Higher energy of HIE-ISOLDE may provide opportunity to probe  $B(E^2; 4^+ \rightarrow 2^+)$  values





HELSINKI INSTITUTE OF PHYSICS

## Collaboration

University of Jyväskylä Helsinki Institute of Physics Universität zu Köln Yale University **University of Liverpool TU Darmstadt KU** Leuven **CERN-ISOLDE CEA-Saclay Slovak Academy of Sciences** University of York



