

(sub-) picosecond lifetime measurements with position-sensitive HPGe detector arrays

<u>Christian Stahl</u>, Marc Lettmann, Norbert Pietralla *IKP*, *TU Darmstadt*

How to facilitate DSAM measurements with position-sensitive HPGe detectors?

How to perform DSAM measurements with radioactive, relativistic beams?

Supported by Bundes für Bild und For

Bundesministerium für Bildung und Forschung

under Grant no. 05P12RDFN8

Motivation – Value of lifetime measurements

TECHNISCHE

DARMSTA

Model-independent access to transition strengths

$$1/\tau \propto B\left(\mathcal{M}L; J_i^{\pi} \to J_f^{\pi}\right) = \frac{1}{2L+1} \left| \left\langle J_f^{\pi} \| | \hat{m}L \| | J_i^{\pi} \right\rangle \right|^2$$

 \rightarrow probing nuclear wave functions

In conjunction with Coulex cross section measurements: Determine nuclear quadrupole moments

$$\sigma_{Coulex} = f(M_{12}, M_{22})$$
from τ
 $\propto Q$

→ e.g. C. Bauer *et al.*, PRC **86**, 034310 (2012)

Basics – Doppler-Shift Attenuation Method

Lifetime range:

Basics – Doppler-Shift Attenuation Method

TECHNISCHE UNIVERSITÄT DARMSTADT

> Principle:

Deduce level lifetimes from the shape of Doppler-broadened photo-peaks

That is done since the 60's. What's new about that?

¹³⁶Xe-ions Coulomb excited on 0.5mg/cm² Carbon, stopped in 30mg/cm² Tantalum

AGATA Demonstrator with 5 TC at backward angles

Effective use of the full statistics and resolution

Good chances to disentangle overlapping transitions

GSI-Experiment U246 (10/2010)

86Kr @ 2.91AMeV

Coulomb-excited on a 0.33mg/cm^{2 nat}C layer **stopped** in a multilayer-target (Gd, Ta and Cu) γ -rays detected by 4 EUROBALL cluster detectors. recoiling carbon ions detected by 4 PIN diodes

Overlapping $2^+_1 \rightarrow gs$ and $3^-_1 \rightarrow 2^+_1$ transitions

[1] C. Stahl, Master Thesis, TU Darmstadt, 2011

Also applicable to position in-sensitive HPGe arrays (Miniball, Gammasphere, ...)

17.06.2013 | Christian Stahl | TU Darmstadt | Institut für Kernphysik | 7

Long lifetime, asymmetric detector response (neutron damage)

Application of the DSA Method with relativistic, radioactive ion beams

- Example: PreSPEC / HISPEC
- Need to identify ions behind the target (cocktail beams)
- No accumulation of activity at the target position
- Relativistic beams

β

 β_{end}

E'/E▲

1

Application of the DSA Method with relativistic, radioactive ion beams

in target

Application of the DSA Method with relativistic, radioactive ion beams

Example application: Lifetime of the 2+1 level in ¹⁰⁶Sn measured with the PreSPEC setup after Coulomb-Excitation

¹⁰⁶Sn ions at 150 MeV/u impinging a 0.75 g/cm² Au target

60

55

Application of the DSA Method with relativistic, radioactive ion beams

Example application: Lifetime of the 2⁺₁ level in ¹⁰⁶Sn measured with the PreSPEC setup after Coulomb-Excitation

¹⁰⁶Sn ions at 150 MeV/u impinging a 0.75 g/cm² Au target

660 fs

1270 fs

 $\theta = 19^{\circ}$

Application of the DSA Method with relativistic, radioactive ion beams

- Example application: Lifetime of the 2⁺₁ level in ¹⁰⁶Sn measured with the PreSPEC setup after Coulomb-Excitation
- Feasibility and Accuracy:

Simulated spectra for 100h beam on target with 1.8x10⁴ pps, 2° polar angle bins

Application of the DSA Method with relativistic, radioactive ion beams

Example application: Lifetime of the 2+1 level in ¹⁰⁶Sn measured with the PreSPEC setup after Coulomb-Excitation

Feasibility and Accuracy:

Can use thicker targets than for 'standard' – Coulex experiments \rightarrow more events per 'ion on target'

Can do Coulex analysis with the same dataset

'Real' Application:

Method will be used for the analysis of PreSPEC data from experiment S428 (level lifetimes in heavy Zr isotopes), Pietri, Ralet *et al.*

\rightarrow No nuclear stopping

 \rightarrow Stopping Power precisely known

Highly charged ions at high velocity:

Case of ¹⁰⁶Sn:

Expect (statistical) accuracy for

the 2⁺₁ level lifetime of

2.5% after 70h beam on target

Application of the DSA Method with relativistic, radioactive ion beams

TECHNISCHE UNIVERSITÄT DARMSTADT

Another sensitivity region with "differential DSAM" in the order of 100ps:

Doppler-correction on exit velocity "fails", if decay occurs far behind the target (assumed angle between direction of ion motion and gamma detection is wrong) P. Doornenbal et al., NIM A 613 (2010) 218–225; C. Domingo-Pardo et al., NIM A 694 (2012) 297–312

→ A "continuous Plunger":

Thank you for your attention!

If you are interested in our analysis software, please contact me!

Stahl@ikp.tu-darmstadt.de

lt's free! ;-) 🧹

Implementation of the continuous angle DSAM in a new Analysis tool

2 major ingredients for the calculation of lineshapes

> Decay function $A_1(t) = \frac{1}{\tau 1} N_1(t)$

- Complex feeding schemes
- Decay function from analytical solutions of the Bateman equation
- Simultaneous fit of feeding transitions
- Different angular distributions for fed and unfed fraction

Implementation of the continuous angle DSAM in a new Analysis tool

2 major ingredients for the calculation of lineshapes

> Decay function $A_1(t) = \frac{1}{\tau 1} N_1(t)$

Stopping-Matrix $p\left(\vec{\beta},t\right)$ from a Monte-Carlo simulation

Realistic Monte-Carlo Simulation of the (Coulomb-) excitation and the deceleration process on the Basis of Geant4

Set **kinematic conditions** in the analysis software to select ion tracks ("particle detectors")

Good platform for the implementation of further excitation processes

⁸⁶Kr ions Coulomb-excited at a Carbon layer and stopped in the following layers, recoiling Carbon ions escape from the target

Choice of excitation situation

17.06.2013 | Christian Stahl | TU Darmstadt | Institut für Kernphysik | 19

dE/dx scaling

17.06.2013 | Christian Stahl | TU Darmstadt | Institut für Kernphysik | 20

dE/dx scaling

Implementation of the continuous angle DSAM in a new Analysis tool

Important effects to account for

- Relativistic corrections of the detector solid angle
- > Transformation of the angular distribution from the ion rest frame to the lab frame

