# Exotic structure and decay of medium mass nuclei near the drip lines within beyond-mean-field approach

**A. PETROVICI** 

Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania

# **Outline**

• complex EXCITED VAMPIR beyond-mean-field model

• proton-rich A~70 nuclei

- shape coexistence, shape transition, pairing correlations

- isospin symmetry breaking effects on Coulomb Energy Differences and competing

superallowed Fermi and Gamow-Teller β-decay

• neutron-rich A~100 nuclei

- triple shape coexistence and shape evolution in the N=58 Sr and Zr isotopes

- Gamow-Teller  $\beta$ -decay relevant for :

- reactor decay heat ( <sup>102,104</sup>Tc )
- r-process ( <sup>104,106</sup>Zr )

Characteristic features of proton-rich  $A \sim 70$  and neutron-rich  $A \sim 100$  nuclei

- shape transition, shape coexistence, shape mixing
- drastic changes in structure with isospin, spin, excitation energy

**Open problems for theoretical models** 

- unitary description of evolution in structure at low and high spins
- unitary treatment of structure and  $\beta$ -decay properties

# *complex VAMPIR* model family

- the model space is defined by a finite dimensional set of spherical single particle states
- the effective many-body Hamiltonian is represented as a sum of one- and two-body terms
- the basic building blocks are Hartree-Fock-Bogoliubov (HFB) vacua
- the HFB transformations are essentially *complex* and allow for proton-neutron, parity and angular momentum mixing being restricted by time-reversal and axial symmetry
- the broken symmetries (s=N, Z, I, p) are restored by projection before variation

\* The models allow to use rather large model spaces and realistic effective interactions

# Beyond-mean-field variational procedure: complex EXCITED VAMPIR model Vampir

$$E^{s}[F_{1}^{s}] = \frac{\langle F_{1}^{s} | \hat{H} \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}$$
$$|\psi(F_{1}^{s}); sM \rangle = \frac{\hat{\Theta}_{M0}^{s} | F_{1}^{s} \rangle}{\sqrt{\langle F_{1}^{s} | \hat{\Theta}_{00}^{s} | F_{1}^{s} \rangle}}$$

 $\hat{\Theta}_{00}^{s}$  - symmetry projector |  $F_{1}^{s}$  - HFB vacuum

# **Excited Vampir**

 $\begin{aligned} |\psi(F_i^s); sM\rangle &= \sum_{j=1}^i |\phi(F_j^s)\rangle \,\alpha_j^i & \text{for } i = 1, ..., n-1 \\ |\phi(F_i^s); sM\rangle &= \Theta_{M0}^s |F_i^s\rangle \\ |\psi(F_n^s); sM\rangle &= \sum_{j=1}^{n-1} |\phi(F_j^s)\rangle \,\alpha_j^n + |\phi(F_n^s)\rangle \,\alpha_n^n \\ (H - E^{(n)}N)f^n &= 0 \\ (f^{(n)})^+ Nf^{(n)} &= 1 \end{aligned}$ 

$$|\Psi_{\alpha}^{(n)}; sM \rangle = \sum_{i=1}^{n} |\psi_i; sM \rangle f_{i\alpha}^{(n)}, \qquad \alpha = 1, ..., n$$

# A~70 mass region

<sup>40</sup>Ca - core model space for both: protons and neutrons  $1p_{1/2}$   $1p_{3/2}$   $0f_{5/2}$   $0f_{7/2}$   $1d_{5/2}$   $0g_{9/2}$ 

(charge-symmetric basis + Coulomb contributions to the  $\pi$ -spe from the core)

# A~100 mass region

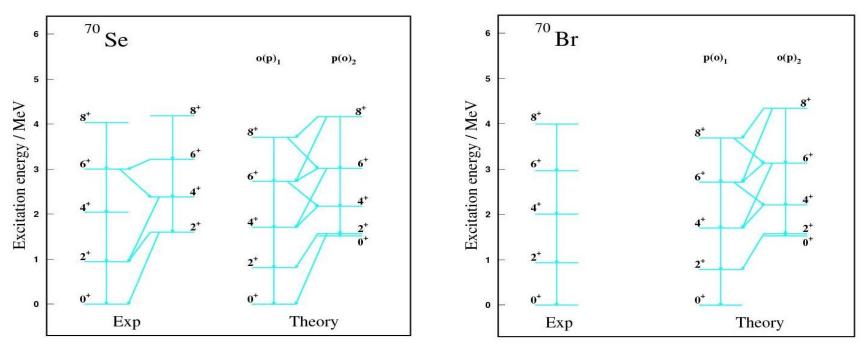
<sup>40</sup>Ca - core model space for both protons and neutrons  $1p_{1/2} \ 1p_{3/2} \ 0f_{5/2} \ 0f_{7/2} \ 2s_{1/2} \ 1d_{3/2} \ 1d_{5/2} \ 0g_{7/2} \ 0g_{9/2} \ 0h_{11/2}$ (single-particle energies adjusted within complex MONSTER (VAMPIR))


# renormalized G-matrix (OBEP, Bonn A)

*pairing properties enhanced by short range Gaussians for:* T = 1 pp, np, nn channels T = 0, S = 0 and S = 1 channels *onset of deformation influenced by monopole shifts:* <0g<sub>9/2</sub> 0f; T=0 |G| 0g<sub>9/2</sub> 0f;T=0>

• Coulomb interaction between valence protons added

**Isospin symmetry breaking effects** 


**Coulomb Energy Differences** 



*Exotic case* : A = 70

A. M. Hurst et al, Phys. Rev. Lett.98 (2007) 072501 (<sup>70</sup>Se: No evidence for oblate shapes) G. de Angelis et al, Eur. Phys. J. A12 (2001) 51 (<sup>70</sup>Br)
J. Ljungvall et al, Phys. Rev. Lett. 100 (2008) 102502 (<sup>70</sup>Se: Evidence for oblate shapes)

# complex Excited Vampir: isospin-symmetry breaking and shape mixing



A. Petrovici, J. Phys.G: Nucl. Part. Phys. 37 (2010) 064036

complex Excited Vampir results: oblate-prolate mixing specific for each nucleus varying with increasing spin

# Shape mixing manifested in the structure of the wave functions

| $I[\hbar]$                                             | o-mixing | p-mixing | $I[\hbar]$                                         | o-mixing | p-mixing    |
|--------------------------------------------------------|----------|----------|----------------------------------------------------|----------|-------------|
| $0^+_1$                                                | 55%      | 39%      | $0_{1}^{+}$                                        | 35%      | 62%         |
| $0^{+}_{2}$                                            | 39%      | 54%      | $0^{+}_{2}$                                        | 59%      | 34%         |
| $\begin{array}{c} 0^+_2 \\ 0^+_3 \end{array}$          |          | 87%      | $0^+_2$<br>$0^+_3$                                 |          | 88%         |
| $2_{1}^{+}$                                            | 57%      | 39%      | $2^{+}_{1}$                                        | 41%      | 57%         |
| $2^{+}_{2}$                                            | 41%      | 58%      | $2^{+}_{2}$                                        | 58%      | 40%         |
| $\begin{array}{c} 2^+_1 \\ 2^+_2 \\ 2^+_3 \end{array}$ |          | 92%      | $2^+_1 \\ 2^+_2 \\ 2^+_3$                          |          | 94%         |
| $4_{1}^{+}$                                            | 62%      | 35%      | $4_{1}^{+}$                                        | 41%      | 56%         |
| $4^+_2 \\ 4^+_3$                                       | 37%      | 63%      | $4^{+}_{2}$                                        | 57%      | 41%         |
| $4_{3}^{+}$                                            |          | 80(13)%  | $egin{array}{c} 4^+_1 \ 4^+_2 \ 4^+_3 \end{array}$ |          | 94%         |
| $6_{1}^{+}$                                            | 37%      | 59%      | $6^+_1$                                            | 20%      | 76%         |
| $6^{+}_{2}$                                            | 61%      | 37%      | $6^{+}_{2}$                                        | 79%      | 20%         |
| $\begin{array}{c} 6_2^+ \\ 6_3^+ \end{array}$          | 43%      | 43%      | $egin{array}{c} 6_2^+ \ 6_3^+ \end{array}$         |          | 44(34)(12)% |
| $8_{1}^{+}$                                            |          | 91%      | $egin{array}{c} 8^+_1 \ 8^+_2 \ 8^+_3 \end{array}$ |          | 89%         |
| $\begin{array}{c} 8^+_1 \\ 8^+_2 \\ 8^+_3 \end{array}$ | 93%      |          | $8^{+}_{2}$                                        | 96%      |             |
| $8^{+}_{3}$                                            |          | 84(10)%  | $8_{3}^{+}$                                        |          | 71(11)(11)% |

The amount of mixing for the lowest states in <sup>70</sup>Se.

The amount of mixing for the lowest states in <sup>70</sup>Br.

Strong oblate-prolate mixing up to 6<sup>+</sup> : oblate components dominate the yrast states of <sup>70</sup>Se, but the yrare states of <sup>70</sup>Br

# Shape mixing revealed by the spectroscopic quadrupole moments

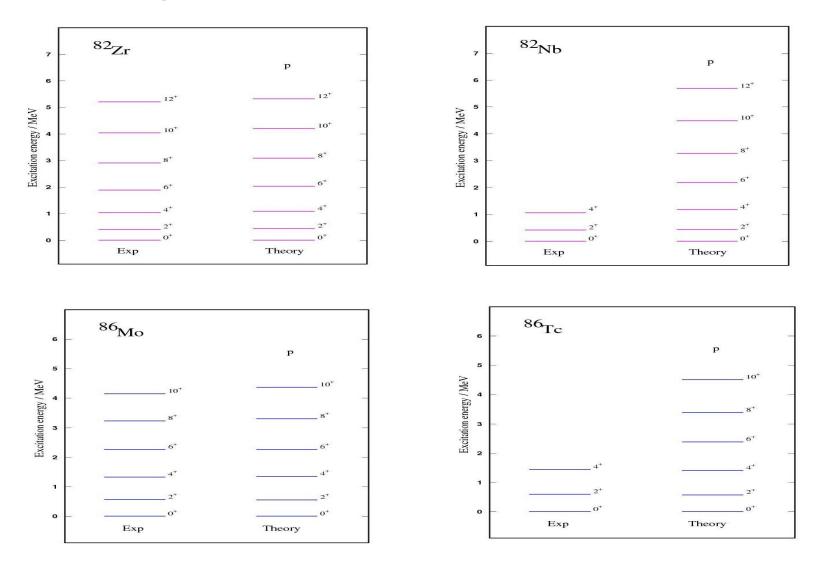
Spectroscopic  $Q_2^{sp}$  (in  $efm^2$ ) of the lowest three

| states of spin I of $^{70}{\rm Se}$ (effective charges $e_p=1.2,\ e_n=0.2).$ |       |       | states | of spin I of <sup>70</sup><br>$e_p = 1.2$ , | Br (effective $e_n = 0.2$ ). | charges |       |
|------------------------------------------------------------------------------|-------|-------|--------|---------------------------------------------|------------------------------|---------|-------|
| $I[\hbar]$                                                                   | $I_1$ | $I_2$ | $I_3$  | $I[\hbar]$                                  | $I_1$                        | $I_2$   | $I_3$ |
| $2^+$                                                                        | 4.5   | -7.   | -43.7  | $2^{+}$                                     | -6.4                         | 4.6     | -44.6 |
| $4^{+}$                                                                      | 11,5  | -16.8 | -54.4  | $4^{+}$                                     | -9.8                         | 5.2     | -60.8 |
| 6+                                                                           | -17.5 | 9.5   | -54.2  | $6^+$                                       | -39.7                        | 33.7    | -62.2 |
| 8+                                                                           | -64.  | 52.1  | -60.   | 8+                                          | -65.5                        | 59.     | -71.4 |

Spectroscopic  $Q_2^{sp}$  (in  $efm^2$ ) of the lowest three

Precise quadrupole moments for low spin states could clarify the open problem

## Shape mixing revealed by the $B(E2;\Delta I = 2)$ strengths


|            | EXV       | AM        | Exp.         | (HFB-based-config.mix.) |  |
|------------|-----------|-----------|--------------|-------------------------|--|
| $I[\hbar]$ | $o(p)_1$  | $p(o)_2$  |              | (Girod et al.)          |  |
| $2^{+}$    | 492       | 501 (5)   | $342\pm19$   | 549                     |  |
| $4^{+}$    | 713       | 761       | $370 \pm 24$ | 955                     |  |
| 6+         | 779 (62)  | 792 (33)  | $530\pm96$   | 1404                    |  |
| 8+         | 717 (193) | 666 (150) |              |                         |  |

 $B(E2; I \rightarrow I - 2)$  values (in  $e^2 fm^4$ ) for the lowest two bands of <sup>70</sup>Se (EXVAM). Strengths for secondary branches are given in parentheses (effective charges  $e_p = 1.2$ ,  $e_n = 0.2$ ).

 $B(E2; I \rightarrow I - 2)$  values (in  $e^2 f m^4$ ) for the lowest two bands of <sup>70</sup>Br (EXVAM). Strengths for secondary branches are given in parentheses (effective charges  $e_p = 1.2$ ,  $e_n = 0.2$ ).

| $I[\hbar]$ | $p(o)_1$ | $o(p)_2$ |
|------------|----------|----------|
| $2^+$      | 541      | 516      |
| $4^{+}$    | 775      | 756      |
| 6+         | 820 (60) | 777 (44) |
| 8+         | 771 (81) | 754 (84) |

# A = 82, 86 analogs

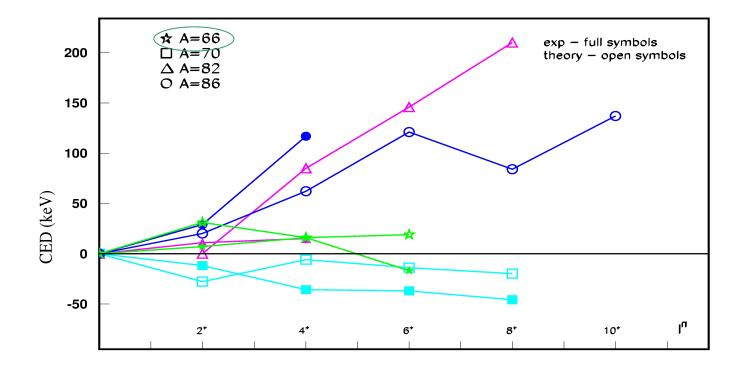


one prolate deformed configuration dominates (>90%) the structure of the yrast states A. Petrovici et al., Phys. Rev. C78 (2008) 064311

*New exotic case:* A = 66



The amount of mixing of the lowest states in  $^{66}$ Ge.


G. de Angelis, A. Petrovici et al., Phys. Rev. C85 (2012) 034320

#### complex Excited Vampir results: different shape mixing changing with spin

| $I[\hbar]$       | o-mixing              | p-mixing $(\mathbf{p}_s)$ | $I[\hbar]$       | o-mixing                | p-mixing $(\mathbf{p}_s)$                   |
|------------------|-----------------------|---------------------------|------------------|-------------------------|---------------------------------------------|
| $0^+_1 \\ 0^+_2$ | ${18(2)\% \over 4\%}$ | 77(2)(1)%<br>82(10)(4)%   | $0^+_1 \\ 0^+_2$ | $rac{15(1)\%}{2(2)\%}$ | 80( <b>2</b> )(2)%<br><b>76</b> (12)(7)(1)% |
| $2^+_1 2^+_2$    | $\frac{38\%}{57\%}$   | 59(2)%<br>37(6)%          | $2^+_1 2^+_2$    | $29\% \\ 64\%$          | $68(2)\%\ 31(3)(1)(1)\%$                    |
| $4_1^+ \\ 4_2^+$ | ${32\%} \\ {63\%}$    | $65(1)\%\ 33(3)\%$        | $4_1^+ \\ 4_2^+$ | $rac{18\%}{76\%}$      | $rac{80(1)\%}{18(5)(1)\%}$                 |
| $6^+_1 \\ 6^+_2$ | 9% $82%$              | 90(1)%<br>9(5)(3)%        | $6_1^+ \\ 6_2^+$ | $\frac{4\%}{81\%}$      | $95(1)\%\ 14(4)\%$                          |

The amount of mixing of the lowest states in  $^{66}$ As.

Significant oblate-prolate mixing up to 6<sup>+</sup>: prolate components dominate the yrast states of <sup>66</sup>Ge and <sup>66</sup>As



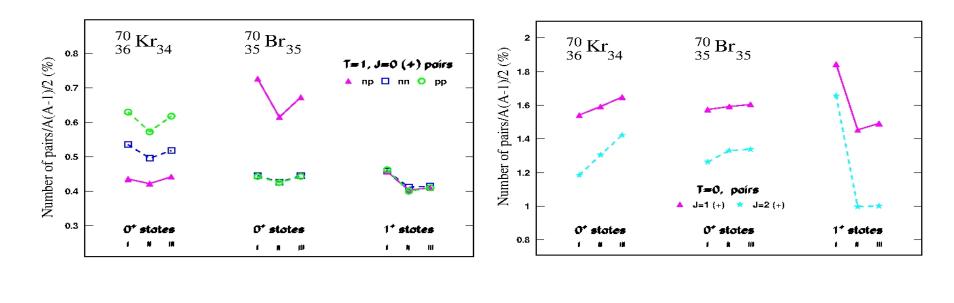
A. Petrovici, J. Phys.G: Nucl. Part. Phys 37 (2010) 064036

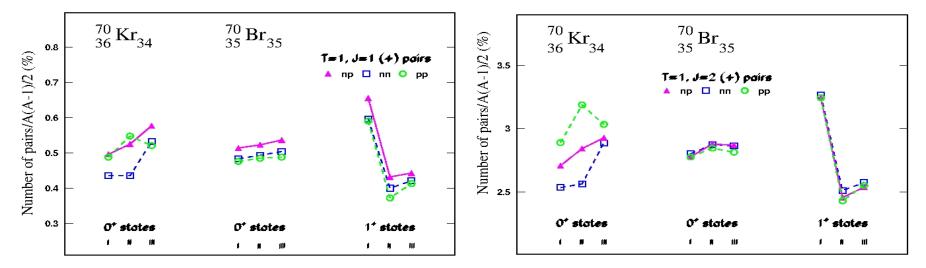
\* G. de Angelis, A. Petrovici et al., Phys. Rev. C85 (2012) 034320

# Superallowed $\beta$ -decays within A=70 isospin vector triplet and pn-pairing correlations

 $^{70}$ Kr  $\rightarrow$   $^{70}$ Br  $\rightarrow$   $^{70}$ Se superallowed Fermi  $\beta$ -decay A. Petrovici et al., Nucl. Phys. A747 (2005) 44  $^{70}$ Kr  $\rightarrow$   $^{70}$ Br competing superallowed Fermi and Gamow-Teller  $\beta$ -decay Iachello, Padova, 1994 Accepted experimental proposal, RIKEN, 2013

# complex EXCITED VAMPIR predictions


<sup>70</sup>Kr  $0^+_I \rightarrow 49\%$  oblate / 51% prolate  $0^+_{II} \rightarrow 44\%$  oblate / 56% prolate  $0^+_{III} \rightarrow 14\%$  oblate / 86% prolate <sup>70</sup>Br - lowest 1+ states (1.9 MeV, 2.6 MeV, 2.9 MeV) one dominant EXVAM configuration  $1^{+}_{I} \rightarrow oblate \quad 1^{+}_{II} \rightarrow prolate \quad 1^{+}_{III} \rightarrow prolate$ 


 $B(GT): \theta_{gs}^{+} \to I_{I}^{+}(\text{ negligible }) / I_{II}^{+}(0.24 \text{ g}_{A}^{2}/4\pi) / I_{III}^{+}(0.16 \text{ g}_{A}^{2}/4\pi)$ 

### Pair structure analysis

pair number operator

$$\begin{split} \rho_{(M)}^{JTT_{z}\pi} &\equiv \frac{1}{2} \sum_{n_{i}l_{i}j_{i}n_{k}l_{k}j_{k}} \delta((-)^{l_{i}+l_{k}},\pi)(-)^{j_{i}+j_{k}-M}(-)^{1-T_{z}} \\ &\times \sum_{m_{i}m_{k}\tau_{i}\tau_{k}} \langle j_{i}m_{i}j_{k}m_{k}|JM \rangle \langle \frac{1}{2}\tau_{i}\frac{1}{2}\tau_{k}|TT_{z}\rangle c_{n_{i}l_{i}j_{i}m_{i}\tau_{i}}c_{n_{k}l_{k}j_{k}m_{k}\tau_{k}}^{\dagger} \\ &\times \sum_{m_{r}m_{s}} \langle j_{k}-m_{r}j_{i}-m_{s}|J-M \rangle \langle \frac{1}{2}-\tau_{k}\frac{1}{2}-\tau_{i}|T-T_{z}\rangle c_{n_{k}l_{k}j_{k}m_{r}\tau_{k}}c_{n_{i}l_{i}j_{i}m_{s}\tau_{i}} \end{split}$$





*No enhancement of proton-neutron T=0 pairing correlations for GT contributing low-lying 1+ states* (*preliminary results*)

# Triple shape coexistence and shape evolution in the N=58 Sr and Zr isotopes

A. Petrovici, Phys. Rev. C85 (2012) 034337

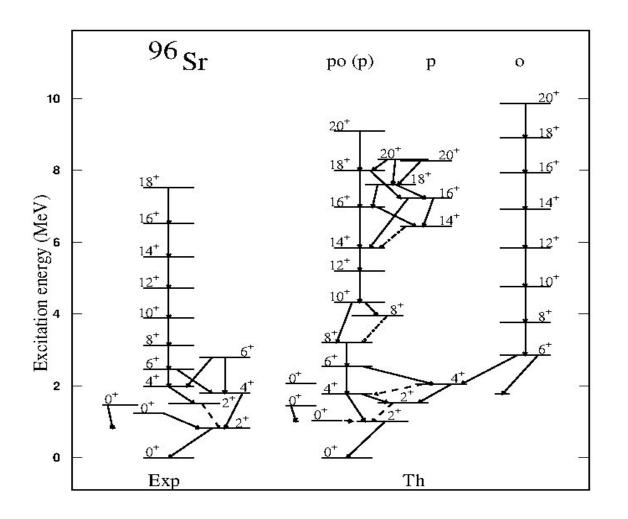
#### Neutron-rich Sr and Zr isotopes: - rapid transition from spherical to deformed shapes - sudden onset of quadrupole deformation for N > 58

Positive parity states up to spin 20<sup>+</sup> in <sup>96</sup>Sr and <sup>98</sup>Zr (12-dimensional *EXVAM many-nucleon bases*)

| $I[\hbar]$  | spherical | prolate | oblate |
|-------------|-----------|---------|--------|
| 01          | 36%       | 20%     | 44%    |
| $0^{+}_{2}$ | 57%       | 18%     | 25%    |
| 03          |           | 69%     | 31%    |
| 04          | 4%        | 6%      | 90%    |

#### *Particular case for* $0^+$ *states*

- the lowest 0<sup>+</sup> VAMPIR configuration is spherical
- the 3-lowest 0<sup>+</sup> orthogonal EXVAM configurations (*s*, *o*, *p*) are situated in an energy interval of 375 keV


The mixing for the  $2^+$  and  $4^+$  states.

| $I[\hbar]$  | e] prolate o |        |
|-------------|--------------|--------|
| 21+         | 34(2)%       | 58(5)% |
| $2^{+}_{2}$ | 65%          | 33(2)% |
| $4_{1}^{+}$ | 56(1)%       | 36(6)% |
| $4_{2}^{+}$ | 43%          | 52(5)% |

• maximum oblate-prolate mixing for 2<sup>+</sup> and 4<sup>+</sup> states

$$\Delta E (2^{+}_{oblate} - 2^{+}_{prolate}) = 24 \text{ keV}$$
$$\Delta E (4^{+}_{prolate} - 4^{+}_{oblate}) = 154 \text{ keV}$$

 spherical EXVAM configurations for spins 2<sup>+</sup> and 4<sup>+</sup> not found up to 4 MeV excitation energy



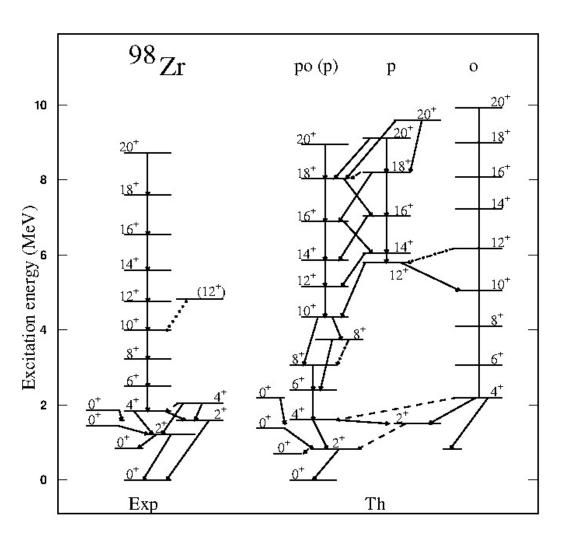
*po(p)-band* - strong prolate-oblate mixing at low spins - variable prolate mixing at higher spins

*almost pure o-band feeds the second* 4<sup>+</sup> (*maximum o-p mixing*)

#### • the 3-lowest 0<sup>+</sup> EXVAM configurations

#### (*s*, *p*, *o*) are separated by 323 keV

The amount of mixing for the lowest 0<sup>+</sup> states of <sup>98</sup>Zr.


| $I[\hbar]$ | spherical | prolate | oblate |
|------------|-----------|---------|--------|
| 01         | 12%       | 43%     | 45%    |
| 0+         | 84%       | 12%     | 4%     |
| 0+         | 1%        | 57%     | 42%    |
| 04         | 2%        | 10%     | 88%    |

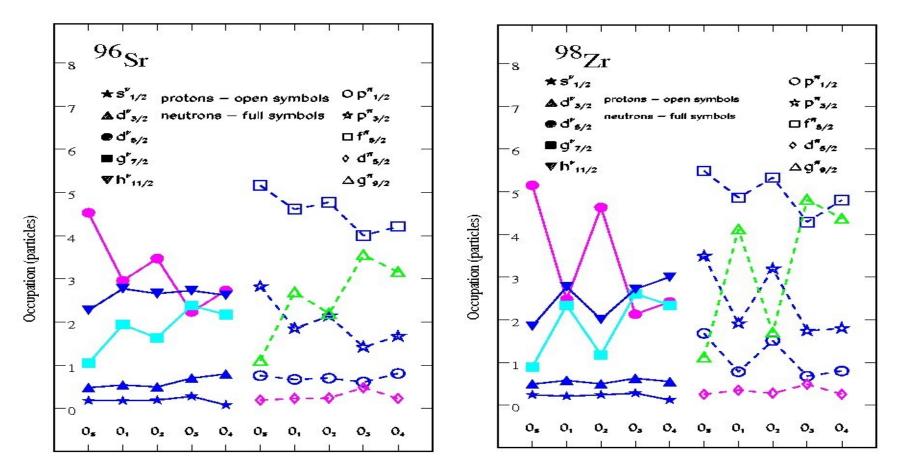
• strong prolate-oblate mixing  $\Delta E (2^{+}_{prolate} - 2^{+}_{oblate}) = 206 \text{ keV}$   $\Delta E (4^{+}_{prolate} - 4^{+}_{oblate}) = 431 \text{ keV}$ 

The mixing for the 2<sup>+</sup> and 4<sup>+</sup> states.

| $I[\hbar]$  | prolate | oblate |
|-------------|---------|--------|
| 21          | 60(8)%  | 31%    |
| $2^{+}_{2}$ | 36%     | 63(1)% |
| $4_{1}^{+}$ | 83(7)%  | 10%    |
| $4_{2}^{+}$ | 13(1)%  | 85(1)% |

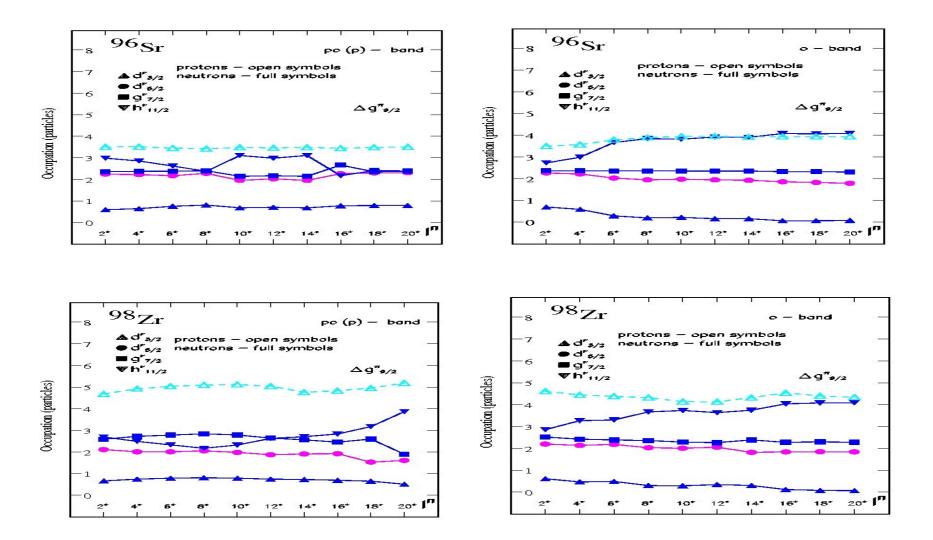
 spherical EXVAM configurations for spins 2<sup>+</sup> and 4<sup>+</sup> not found up to 4 MeV excitation energy




po(p)-band - strong prolate-oblate mixing at low spins

variable prolate mixing at higher spins

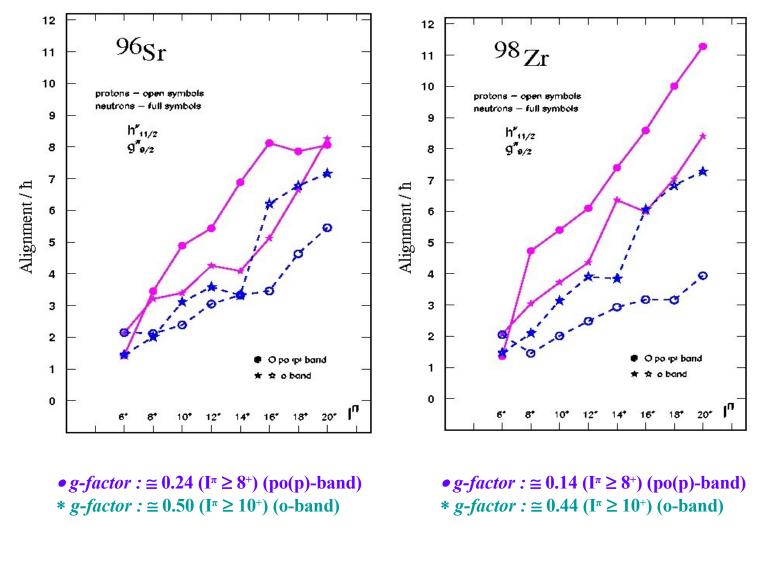
o-band feeds the second 2<sup>+</sup> (maximum o-p mixing)


#### Occupation of valence single-particle orbitals for 0<sup>+</sup> states – sensitive to intrinsic deformation

#### $d_{5/2}^{v}$ occupation – essential for spherical 0<sup>+</sup> EXVAM configuration $g_{9/2}^{\pi}$ occupation – significantly changing from intrinsically oblate to prolate deformed 0<sup>+</sup> EXVAM configurations



Strong E0 transitions support mixing of differently deformed configurations in 0+ wave functions $\rho^{2 exp}_{max}(E0; 0^+_3 \rightarrow 0^+_2) = 0.180$  $\rho^{2 exp}_{max}(E0; 0^+_3 \rightarrow 0^+_2) = 0.075(8)$  $\rho^{2 EXVAM}_{max}(E0; 0^+_2 \rightarrow 0^+_1) = 0.066$  $\rho^{2 EXVAM}_{max}(E0; 0^+_2 \rightarrow 0^+_1) = 0.060$ 


#### Evolution in structure with spin and excitation energy revealed by relevant spherical occupations



changes in structure corroborated with underlying shapes and evolution of shape mixing

#### Changes in structure revealed by angular momentum alignment and magnetic properties





 $B(M1; 8_{3}^{+} \rightarrow 8_{1}^{+}) = 1.29 \ \mu_{N}^{2}$ 

 $B(M1; 8_{2}^{+} \rightarrow 8_{1}^{+}) = 1.60 \ \mu_{N}^{2}$ 

# $B(E2;\Delta I = 2)$ strengths $\rightarrow$ fragmentation $\leftrightarrow$ mixing

 $B(E2; I \rightarrow I-2)$  values (in  $e^2 fm^4$ ) for the lowest bands of <sup>96</sup>Sr (EXVAM) (effective charges  $e_p = 1.3, e_n = 0.3$ ).

| $I[\hbar]$ | po(p)-band                                  | o-band                 |
|------------|---------------------------------------------|------------------------|
| 2+         | 795 <b>340(209) (</b><br><b>580 (prelin</b> | old)<br>ninary-Isolde) |
| 4+         | 1770 (187)                                  | 1901 (12)              |
| 6+         | 1911 (560)                                  | 1484 (215) (89)        |
| 8+         | 2127 (361)(122)                             | 1436 (159) (121) (99)  |
| 10+        | 819 (1329) (168)                            | 1514 (231)             |
| 12+        | 2332 (142)                                  | 1760                   |
| 14+        | 2354 (57) (44)                              | 1392                   |
| 16+        | 238 (2237) (160)                            | 1590                   |
| 18+        | 753 (1374) (248)                            | 1459                   |
| 20+        | 2183 (97)                                   | 1359                   |

 $B(E2; I \rightarrow I - 2)$  values (in  $e^2 fm^4$ ) for the lowest bands of <sup>98</sup>Zr (EXVAM) (effective charges  $e_p = 1.3$ ,  $e_n = 0.3$ ).

| $I[\hbar]$ | po(p)-band       | p-band           | o-band              |
|------------|------------------|------------------|---------------------|
| 2+         | 1140 (198)(161)  |                  | 1305 (28) (18) (15) |
| 4+         | 2072 (620)       |                  | 1593 (56)           |
| 6+         | 2558 (101)       |                  | 1662                |
| 8+         | 1802 (942)(153)  |                  | 1572 (123)          |
| 10+        | 719 (1430)       |                  | 1314 (119) (100)    |
| 12+        | 2300 (216)       | 731 (345) (212)  | 663 (621) (307)     |
| 14+        | 2428 (123)       | 1840 (392)       | 1094 (494)          |
| 16+        | 1360 (832) (190) | 548 (246) (1421) | 602 (250) (195)     |
| 18+        | 863 (207) (1416) | 1347 (713) (808) | 1115                |
| 20+        | 409 (1958)       | 347 (185) (1972) | 1313                |

Experimental lifetimes for intermediate spin states: simultaneous fit to several levels suggests deformation

 $Q^{exp}_{\theta} (12^+ \to 10^+ \to 8^+) = 220 (15) \ efm^2 \qquad \qquad Q^{exp}_{\theta} (12^+ \to 10^+ \to 8^+ \to 6^+) = 200 (10) \ efm^2$ 

### Spectroscopic quadrupole moments $\rightarrow$ deformation and mixing

| $I[\hbar]$ | po(p)         | 0                    | $I[\hbar]$ | po(p)  | p      | 0    |
|------------|---------------|----------------------|------------|--------|--------|------|
| 2+         | 9.5 <b>()</b> | (preliminary-Isolde) | 2+         | -36.6  |        | 7.1  |
| 4+         | -23.9         | 1.4                  | 4+         | -89.6  |        | 54.7 |
| 6+         | -100.3        | 75.5                 | 6+         | -115.5 |        | 76.7 |
| 8+         | -120.1        | 77.3                 | 8+         | -126.7 |        | 70.7 |
| 10+        | -120.7        | 94.4                 | 10+        | -130.1 |        | 58.2 |
| 12+        | -124.1        | 94.6                 | 12+        | -129.1 | -98.5  | 55.6 |
| 14+        | -124.5        | 90.5                 | 14+        | -126.1 | -121.2 | 30.5 |
| 16+        | -130.0        | 85.4                 | 16+        | -126.6 | -123.0 | 60.8 |
| 18+        | -126.2        | 80.1                 | 18+        | -124.2 | -134.4 | 74.9 |
| 20+        | -124.4        | 68.1                 | 20+        | -125.6 | -135.4 | 68.9 |

*po(p)-band:*  $\beta_2^{EXVAM} (8^+/10^+/12^+) \cong 0.3$ 

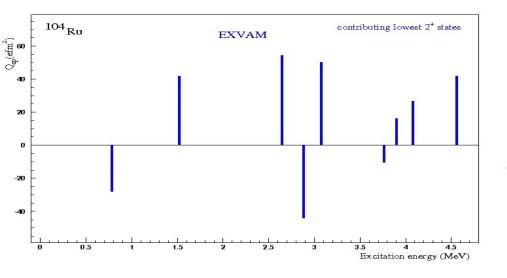
*o-band*:  $\beta_2^{EXVAM}$  (8<sup>+</sup>/10<sup>+</sup>/12<sup>+</sup>)  $\cong$  -0.19  $\div$  -0.23 *o-band*:  $\beta_2^{EXVAM}$  (8<sup>+</sup>/10<sup>+</sup>/12<sup>+</sup>)  $\cong$  -0.17  $\div$  -0.13

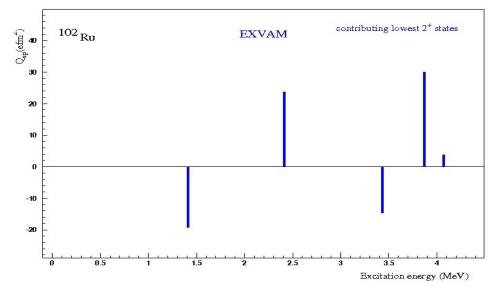
# Gamow-Teller β decay of <sup>102</sup>Tc and <sup>104</sup>Tc (reactor decay heat)

M.D. Jordan, A. Algora A. Petrovici et al., Phys. Rev. C87 (2013) 044318

$$\begin{array}{ll} {}^{102}Tc_{59} \rightarrow {}^{102}Ru_{58} & {}^{104}Tc_{61} \rightarrow {}^{104}Ru_{60} \\ \\ Q_{\beta} = 4.532 \pm 0.009 \ MeV & Q_{\beta} = 5.516 \pm 0.006 \ MeV \\ \\ {}^{1^{+}}_{gs} \rightarrow 0^{+} \ / \ 1^{+} \ / 2^{+} & {}^{3^{+}}_{gs} \rightarrow 2^{+} \ / \ 3^{+} \ / 4^{+} \end{array}$$

 $T_{1/2} = 5.28(15) s$   $T_{1/2} = 1098(18) s$ 


# complex EXCITED VAMPIR wave functions


 $1^{+}_{gs} \rightarrow 53\% \text{ oblate / 47\% prolate}$ (7 EXVAM components)  $3^+_{gs} \rightarrow > 99\%$  prolate (7 EXVAM components) <sup>102</sup>**Ru**<sub>58</sub>

*complex EXCITED VAMPIR bases:* 26 orthogonal projected configurations

*for the spins 0<sup>+</sup>, 1<sup>+</sup>, 2<sup>+</sup> Gamow-Teller contributing states* 

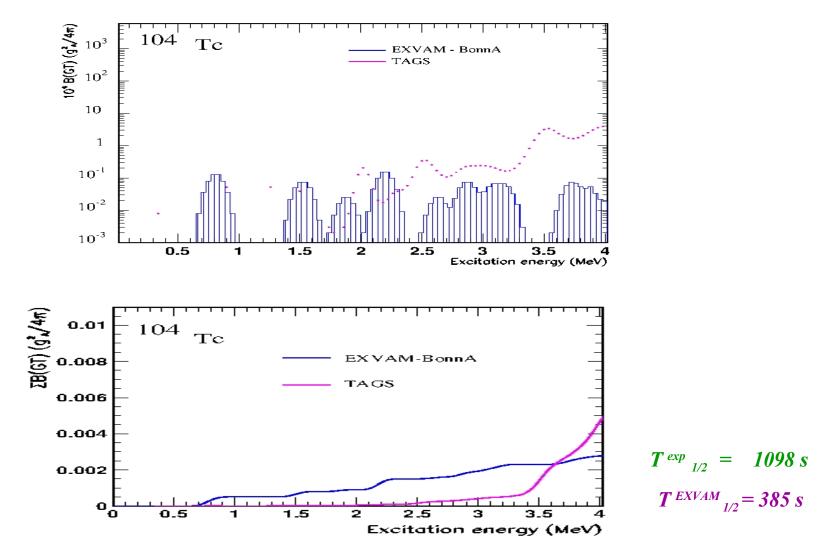
- 0<sup>+</sup>: from 85% to 26% prolate components including almost spherical ones
- 2<sup>+</sup>: from 78% to 26% prolate components





<sup>104</sup>**Ru**<sub>60</sub>

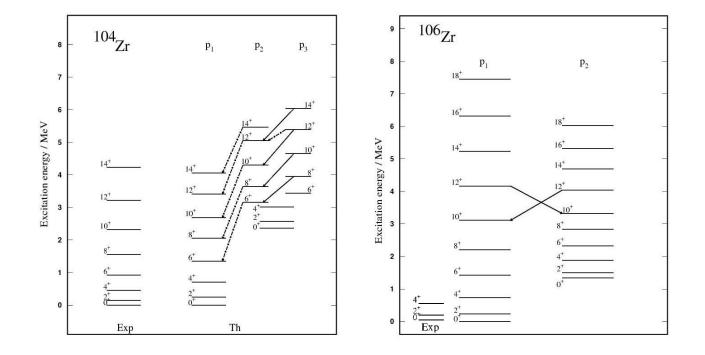
complex EXCITED VAMPIR bases: 25 orthogonal projected configurations


for the spins 2<sup>+</sup>, 3<sup>+</sup>, 4<sup>+</sup> Gamow-Teller contributing states 2<sup>+</sup>: from 82% to 9% prolate components 4<sup>+</sup>: from 96% to 8% prolate components

Spectroscopic quadrupole moments: larger deformation for the N=60 states with respect to the N=58 ones  $^{102}Tc_{59} \rightarrow ^{102}Ru_{58}$ 



Essential contribution from  $g_{9/2}^{\pi}g_{7/2}^{\nu}$ ,  $d_{5/2}^{\pi}d_{3/2}^{\nu}$ , and  $d_{5/2}^{\pi}d_{5/2}^{\nu}$  matrix elements


 $^{104}Tc_{61} \rightarrow ^{104}Ru_{60}$ 



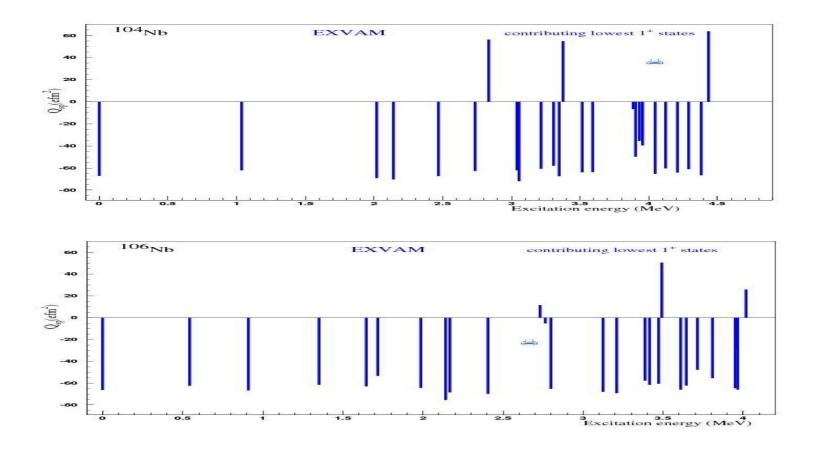
Contributions from  $g_{9/2}^{\pi}g_{7/2}^{\nu}$ ,  $d_{5/2}^{\pi}d_{3/2}^{\nu}$ ,  $d_{5/2}^{\pi}d_{5/2}^{\nu}$ ,  $p_{1/2}^{\pi}p_{3/2}^{\nu}$ ,  $p_{3/2}^{\pi}p_{1/2}^{\nu}$ matrix elements, all small, manifesting also cancellation effect

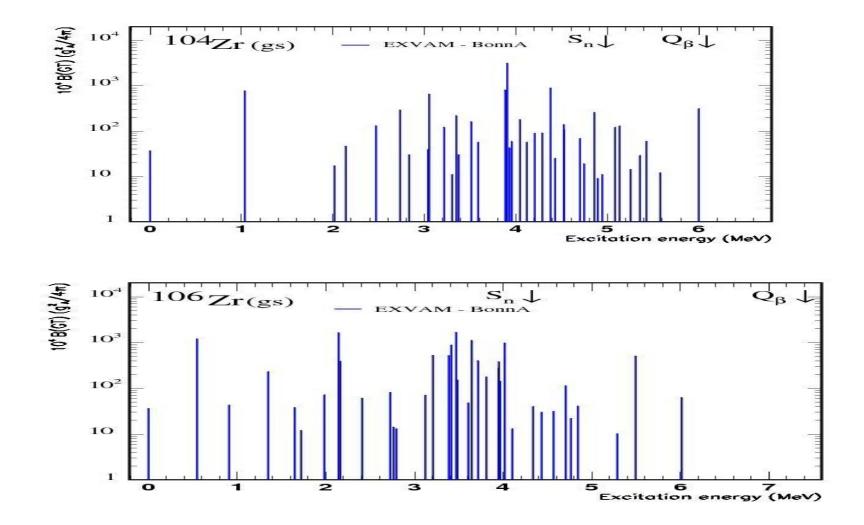
Gamow-Teller  $\beta$ -decay half-lives and  $\beta$ -delayed neutron emission probabilities of Zr isotopes relevant for the r-process A = 104, 106

#### $^{98-110}Zr$ chain : rapid transition from spherical to deformed shape shape coexistence $\rightarrow$ competing prolate, oblate, and spherical shapes



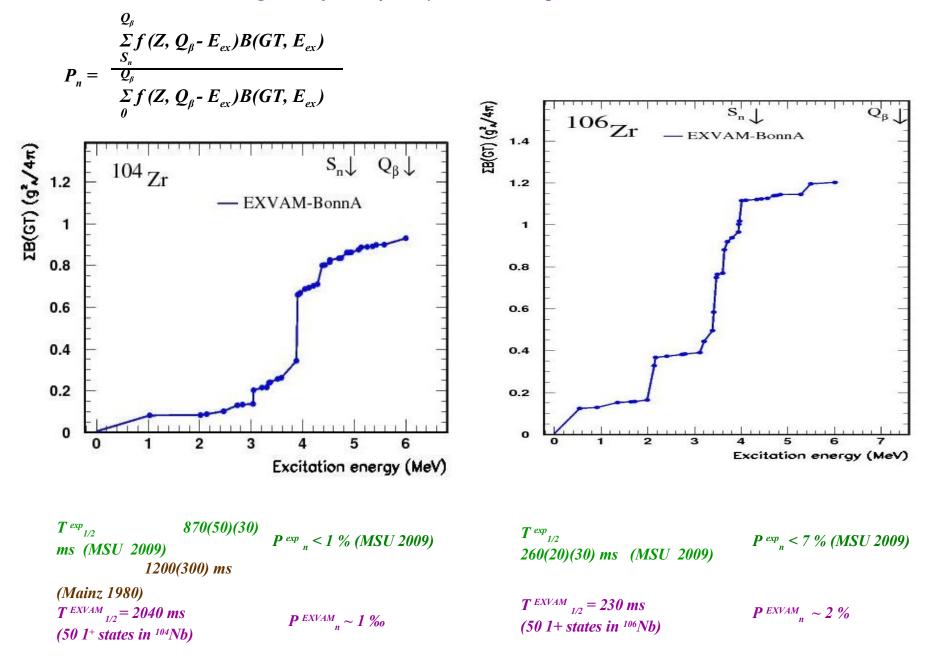
• variable mixing of prolate deformed EXVAM configurations at intermediate and high spins • ground state dominated (99%) by a strongly deformed EXVAM configuration


A. Petrovici et al., J. Phys. 312 (2011) 092051


 $^{104}Zr \rightarrow ^{104}Nb$   $^{106}Zr \rightarrow ^{106}Nb$ 

A. Petrovici et al., Prog. Part. Nucl. Phys. 66 (2011) 287

complex Excited Vampir many-nucleon basis: 50 projected 1<sup>+</sup> configurations in <sup>104</sup>Nb and <sup>106</sup>Nb


Gamow-Teller contributing states: large variety of spectroscopic quadrupole moments above 2 MeV excitation energy





Essential contribution from  $g_{9/2}^{\pi}g_{7/2}^{\nu}$ ,  $d_{5/2}^{\pi}d_{3/2}^{\nu}$ , and  $d_{5/2}^{\pi}d_{5/2}^{\nu}$  GT matrix elements

Gamow-Teller accumulated strengths, half-lives, *β*-delayed *v*-emission probabilities



# Summary and outlook

# complex EXCITED VAMPIR model explains self-consistently

• shape coexistence and isospin mixing effects on CED and  $\beta$ -decay of proton-rich A~70 nuclei

- experimental trends in neutron-rich A~100 isotopes :
  - triple coexistence of spherical, prolate, oblate configurations in the structure of lowest 4 0<sup>+</sup> states
  - multifaceted yrast structure specific for <sup>96</sup>Sr and <sup>98</sup>Zr
  - remarcable difference in GT  $\beta$ -decay properties of <sup>102</sup>Tc and <sup>104</sup>Tc revealed by TAGS data
  - half-lives and  $\beta$ -delayed neutron emission probabilities of <sup>104,106</sup>Zr nuclei

The effective interaction is currently refined studying chains of proton-rich and neutron-rich nuclei

In collaboration with:

K. W. Schmid

Tuebingen University, Germany