Connecting high-K and low-K isomers in Ta-180 and Lu-176 (Production and destruction in stars)

Laboratory Photoexcitation with Bremsstrahlung

Activation "resonances" and individual states in Ta-180 Search for Predicted "back-decays"

Production/destruction status

Possible gateway states in Lu-176:

the 835 keV 5⁻ state properties

Chance mixing in 7⁻ states: interactions

The 4⁻ band : I somers in Deep I nelastic reactions

Rate implications...

Are we there yet?

George Dracoulis; NSP2013

¹⁸⁰Ta production

Shielded from the r-, s- and p- processes

George Dracoulis; NSP2013

Ta180-intro.md

DESTROY VIA INTERMEDIATE STATES (IS)

Coulomb excitation:

C. Schlegel et al, Phys. Rev. C 50 (1994) 2198.
M. Schumann et al, Phys. Rev. C 58 (1998) 1790.
M. Loewe et al, Acta. Phys. Pol. B 30 (1999) 1319.
C. Schlegel et al, Eur. Phys. J. A 10 (2001) 135.
M. Loewe et al, Phys. Lett. B 551 (2003) 71.

Photoactivation:

J.J. Carroll et al, Astrophys. J. 344 (1989) 454.
C.B. Collins et al, Phys. Rev. C 42 (1990) R1813.
D. Belic et al, Phys. Rev. Lett. 83 (1999) 5242.
I. Bikit et al, Astrophys. J. 522 (1999) 419.
D. Belic et al, Phys. Rev. C 65 (2002) 035801.

LABORATORY MEASUREMENT RESONANT ACTIVATION

[Booth and Brownson, Nucl Phys A 98, 529,(1967)] [Berg and Kneissl, Ann Rev Nucl Part Sci 37, 33 (1987)]

Filler-lab-measurement

George Dracoulis; NSP2013

Fig. 4. The principle of photoactivation with bremsstrahlung. The figure depicts the activation of a fictitious nucleus with mediating states at 1.2 and 1.9 MeV.

Belic et al . NI M A 463 (2001) 26

"LABORATORY EXCITATION WITH BREMSSTRAHLUNG

George Dracoulis; NSP2013

NRF-Bremsstrahlung.md

Belic et al Phys Rev C 65 (2002) 035801 Phys Rev Lett. 83 (1999) 5242

TA-180 - observed resonances are strong

s_E max. (simple case)

1 MeV photon:

 $s_E (max.) \sim 2000 \ x \ \Gamma_m \quad (eV.b)$

 $s_E = 1 \text{ eV.b} \text{ means } \Gamma_m \sim 5x \ 10^{-4} \text{ eV}$

E1: 2x10⁻⁴ W.u. M1: 2.5 x 10⁻² W.u E2: 10 W.u. E3: 6x10⁵ W.u.

George Dracoulis; NSP2013

/ta180/sigma-max.md

planck etc.

Stellar ingredients (equilibrium)

 Photon flux
 Maxwellian state population
 ionisation (reduced internal conversion)

George Dracoulis; NSP2013

"TA-180 - effective half-life; SINGLE IMS

WHAT ARE THE CORRESPONDING STATES ? CAN THE RESONANCE STRENGTHS BE EXPLAINED?? [NUCLEAR STRUCTURE]

TA-180 - observed resonances are strong

TA-180 - 8⁺, 9⁺, 10⁺ groups of three

"RESONANCES MATCH WITH NEW STATES IN TA180 "

Walker, Dracoulis and Carroll Phys RevC 64 (2001) 061302 (R) Full schemes see:Dracoulis et al Phys Rev C 58 (1998) 1444; ibid 62 (2000) 037301; Saitoh et al Nucl. Phys. A 660 (1999)121; Wendel et al. Phys Rev C 65 (2001) 014309

EXTRACT "BACK- DECAY" WIDTH CONSISTENT WITH RESONANCE YIELD

$$s_{E} = \int_{ER} \sigma \, dE = \frac{\lambda^{2}}{4} \frac{(2I_{a}+1)}{(2I_{m}+1)} \frac{\Gamma_{m}\Gamma_{0}}{\Gamma} \quad (eV.b) \qquad \begin{array}{l} \Gamma_{-} \text{ total width} \\ \Gamma_{0} - \text{ path to ... 1}^{+} \\ \Gamma_{m} - \text{ back decay} \end{array}$$

$$\boxed{\Gamma_{m} = \frac{s_{E}}{(\lambda^{2}/4)g} / \left[1 - \frac{s_{E}}{(\lambda^{2}/4)g} \frac{1}{\Gamma_{0}}\right] \quad (eV)}$$

$$\boxed{\text{measured and}} \\ \text{estimated (rotational model)} \qquad \underbrace{\text{measured and}}_{\text{states}^{22}} \underbrace{\text{measured and}}_{\text{redef}} \\ \text{Walker, Dracoulis and Carroll Phys RevC 64 (2001) 061302 (R)}$$

$$\boxed{\text{George Dracoulis; NSP2013}}$$

Predicted E1 Branches

George Dracoulis; NSP2013

 \leftarrow

Initial State		Eγ	Γγ [10 ⁻⁵ eV]	%
1499: 10+		423 221	8.8 4.7	
E	E1	1424 1221 995	8.7 5.5 3.0	28% 18% 10%
1278: 9+		383 201	4.3 2.7	
E	E1	1223 1000	$5.2\\3.0$	34% 20%
1076: 8+		344 182	1.8 1.2	
E	E1	1001	3.0	50%

NON-OBSERVATION OF BACK-DECAYS:

- a) Association incorrect ? (despite match)
- **b)** What are the states that produce resonances ?
- c) How can the laboratory cross-sections be so large??

not such a rarity...

George Dracoulis; NSP2013

Lu- 176

s-process...

Lu-176 new scheme: in progress;

Branching ratio to 1⁻ state

Lu-176, 839 keV, 5⁻ state, K=4⁻ band: Status

limits 10 < τ < 433 ps uncertain low-energy branches confirmed band member would have τ ~ 15 ps

BUT

839 keV E2 branch to 7- ground state is 1.4 W.u !!. \mathbf{X} expect < 10⁻³ W.u.known in 177_{Lu}

 ν 7/2⁻[514] π 1/2⁺[411] to ν 7/2⁻[514] π 7/2⁺[404]

Rotational band structure inconsistent with isotone g.s in ¹⁷⁴Tm - Hughes et al. Phys Rev C in press (2013)

George Dracoulis; NSP2013

Mixing of 7⁻ states through chance degeneracy

Limit on 725 keV 7⁻ state mixing [0.5 keV separation*]

(Limit on ?) 725 keV 7⁻ state mixing

Neutron-rich nuclei via deep-inelastic reactions High-spin isomers Intermediate-K bands (4⁺)

ISOMERS/GAMMASPHERE- HIGH SENSITIVITY

EXPECTED LABORATORY RESONANCES: E1 to 6+, 7+, 8+

"Transfer Rate" Implications?

"Transfer Rate"

Transfer probabilities (inverse lifetime)

GDD (d,2n):7⁻ 725 keV state mix: 50 eV < |V| < 75 eV) [stellar via 564 keV state] S_E = 0.0230 - 0.524 eV.b

Van Horenbeeck Coulomb Excitation (activation) Integrated < 1000 keV ; $S_E = 0.0300 \text{ eV.b}$

Most (i) significant in stellar environment ; e⁻ (E*/kT) (ii) probably insignificant in laboratory photoactivation Inconsistent with lab. Coulomb Excitation??

filler-sigma-725-839-and4plus.md

180_{Ta} :

- $K = 5^+$ band Back-Decays not observed
- $K = 5^+$ bandhead link to 7^+ not observed

176_{Lu} :

5⁻, 839 keV state; branch defined, τ to be measured ? 7⁻, 725 keV state mixing measured - significant Observation of multiple decays connecting 6⁺, 7⁺, 8⁺ states of K = 4⁺ band connecting 7⁻ and 1⁻ states

176Lu : Strength observed in Coulomb excitation missing?

conclusions-interim.md

Challenges:

[1] To measure weak γ -branches in the laboratory

Not clear that one can measure down to the levels required to account for random (isolated) state mixing where < 1% g-ray branches are implied

[2] To identify and understand the properties of states that lead to increasingly larger photoactivation resonances in the laboratory

[Dream] Intense, quasi-monoenergetic low energy Photon source (<500 kev to 4MeV)

There are more questions than answers, And the more I find out, the less I know

...Johnny Nash 1972

conclusions-more-q-than-a.md

George Dracoulis; NSP2013