From GASP to ROSPHERE: Gamma-ray spectroscopy at NIPNE – Bucharest

Dorel Bucurescu

IFIN-HH, Bucharest

N≈Z nuclei at GASP - Laboratori Nazionali di Legnaro

p-drip line: G.A.Lalazissis et al, Nucl. Phys. A719,209c(2003): Rel. HB calc.

TANDEM Accelerator Laboratory at IFIN-HH

- 9 MV TANDEM accelerator, completely modernized
- Duoplasmatron alpha particle source (Liexchange)
- Sputtering source
- "Fast" (nanoseconds) pulsing system (200 ns)
- "Slow" (~ms to hundreds of sec.) pulsing system
- Very good transmission (>98%)

Infrastructure for experiments

The major investments since ~2000 had in mind to:

- identify and exploit valuable "niche" research topics
- create an *international user community* for the national facilities
- add value to the Romanian contribution in major experimental nuclear physics collaborations
- make local nuclear physics experiments more attractive for students and provide good quality local training

"Niche" example: Wide-range timing

Lifetimes have been measured only for a small fraction of the known nuclear levels

The transition matrix elements give important information about the structure of the states involved

- DSAM : T_{1/2} : n · 10 fs ~2 ps
- Plunger : T_{1/2} : ~ ps n · 10 ps
- Electronic fast timing : n · 10 ps ~10 ns
- Fast beam pulsing : 10 ns 1 µs
- Slow beam pulsing : $T_{1/2} > 1$ ms

~1993

~2007

~2010

IFIN-HH Nuclear Physics Department

ROSPHERE

ROmanian array for SPectroscopy in HEavy ion REactions (June 2012)

25 detector positions

- (5 rings: 90, +/- 60, +/- 43 degrees)
- ~ 55% HPGe with BGO anticompton shields
- planar Ge detectors (LEP)
- LaBr₃:Ce scintillator detectors

ROSPHERE with LaBr₃(Ce)

July 2012

14 HPGe detectors 11 LaBr₃(Ce) detectors

In-beam fast timing method

- Direct measure of time decay of excited levels: range: tens of ps ---- ns

Ge Gate

<u>T</u>

 $LaBr_{3}: E_{\gamma 1} - E_{\gamma 2} - \Delta t_{12}$

Start LaBr-1

Stop LaBr-2

Padova 9-12 June 2013

IFIN-HH method : *In-beam* γ -*ray* measurements with a mixed detector array : HPGe (good energy resolution) + LaBr₃:Ce scintillators (fast timing and reasonably good energy resolution):

- off-line correction for the CFD time walk
- triple coincidences : Ge LaBr₃ LaBr₃
- weak channels (fusion-evaporation, transfer)

Accuracy of *In-Beam Fast Timing* measurements: example of ¹⁹⁹TI

N.Mărginean et al., Eur. Phys. J. A46(2010)329

Lifetime measurements in ⁶⁷Cu

Asai et al. PRC62(2000)054313:

 $T(9/2^+) < 0.3$ ns → if B(E1) ~ 10⁻⁵ W.u., like in lighter isotopes, then B(E3) >> 11 W.u. *!* 0.6 ns < $T(15/2^+)$ <2.4 ns

Lifetimes ⁶⁷Cu

⁶⁴Ni(α,p) @ 18 MeV; 5HPGe +4 HPGe LEP + 8 LaBr₃(Ce)

0

-2

0

2

Time [ns]

6

8

10

Lifetimes ⁶⁷Cu

B(E1;9/2⁺ \rightarrow 7/2⁻₁) = 2.6(3) × 10⁻⁶ W.u. Exp.: B(E3;9/2⁺ \rightarrow 3/2⁻)= 16.8(1.7) W.u. ⁶⁴Ni: 3⁻ \rightarrow 0⁺ : 10.8(0.6) W.u.

SM (NUSHELL) $(f_{5/2}p_{3/2}p_{1/2}g_{9/2})$ space, **jj44b** resid. inter.: $\Psi(9/2^+) \sim 39\% | J_v = 3^-; (\pi p_{3/2})^1 > +32\% | J^v = 0^+; (\pi g_{9/2})^1 > +...$ $\Psi(3/2^-) \sim 89\% | J_v = 0^+; (\pi p_{3/2})^1 >$

 e_{π} =1.5e, e_{v} =0.5e **B(E3)= 8.6 W.u.**

In Beam Fast-Timing Studies in ³⁴P

Collaboration with Surrey Univ. (P. Regan, P. Mason, *et al.*)

Experiment at IFIN-HH:

50 mg/cm² Ta₂¹⁸O₅ enriched target; 36 MeV ¹⁸O beam

 $4^{-}: \pi s_{1/2} \otimes v f_{7/2}$ $2^{+}: \pi s_{1/2} \otimes v d_{3/2}^{-1}$

- $4^{-} \rightarrow 2^{+}$ EM transition: M2 + E3
- M2 and E3 decays can proceed by M2 : => $vf_{7/2} \rightarrow vd_{3/2}$ E3 : => $vf_{7/2} \rightarrow vs_{1/2}$
- Lifetime and mixing ratio information gives direct values of M2 and E3 transition strength Direct test of shell model wavefunctions $(4^-) = \alpha_1 \phi_1 + \beta_1 \phi_2 + \gamma_1 \phi_3 \dots$ $(2^+) = \alpha_2 \phi_1 + \beta_2 \phi_2 + \gamma_2 \phi_3 \dots$

³⁴P

 $4^- \rightarrow 2^+ = M2$ decay, consistent with $\delta=0.0(1)$ of Bender, PRC85(2012)044305 'Pure' $vf_{7/2} \rightarrow vd_{3/2}$ transition, B(M2) = 0.064(3) W.u. Precision test of nuclear shell model: OXBASH, ¹⁶O core, WBP interaction: B(M2) = 0.139 W.u., B(E3) = 0.127W.u.

P. Mason et al., Phys. Rev. C85(2012)064303

¹³⁸Ce: wide-range timing technique

Lifetime of first excited 2⁺ state in ¹⁸⁸W

T. Shizuma et al. Eur. Phys. J. A30, 391 (2006)

- ¹⁸⁶W(⁷Li,αp)¹⁸⁸W, 31 MeV
- Reaction mechanism is a mix of incomplete fusion and low-energy transfer

Collaboration with Surrey Univ. (P. Mason *et al.*)

11 LaBr₃(Ce) Bucharest/Surrey

P.J.R. Mason et al., presented at EuNPC 2012 and submitted to PRC

2⁺ state in ¹⁸⁸W

P.J.R. Mason et al., submitted to Phys. Rev. C

The ³⁵Ar – ³⁵Cl mirror pair

and 1% i-spin mixing for A~35:

³⁵Ar: **τ(7/2⁻) ≈ 350 ps**.

Lifetime of the 7/2⁻ state in ³⁵Ar

In Beam Fast-Timing of ^{103,105,107}Cd

Padova 9-12 June 2013

^{103,105,107}Cd

^{103,105,107}Cd

7/2+1 state in ^{103,105,107}Cd: s.p. state (g_{7/2})

S. Kisyov et al., Phys. Rev. C84(2011)014324

Conclusions

Investing in the "wide-range timing spectroscopy" proved to be a successful approach for creating our specific "niche" and complement research at large scale facilities

There is now a well established international user community at the Bucharest TANDEM

The good local research infrastructure allows high-quality training of young researchers