

Lifetime measurements by Doppler methods with the RoSphere array

C. Mihai

"Horia Hulubei" National Institute For Physics and Nuclear Engineering Bucharest, Romania

The Bucharest 9 MV FN TANDEM Accelerator

Upgraded to PELLETRON charging system Nanosecond pulsing system Delivers p, ⁴He, ^{6,7}Li, ⁹Be, ¹⁰B, ^{12,13}C, ^{16,18}O, ¹⁹F, etc

Lifetime measurements by: •In-beam fast timing (FT) •Recoil distance Doppler shift (RDDS) •Doppler shift attenuation method (DSAM)

ROmanian array for γ-SPectroscopy in HEavy ion REactions 25 positions sphere on 5 rings (37°, 70°, 90°, 110°, 143°) x 5 positions 2 configurations envisaged: •Mixed array with 15 50% HPGe detectors with BGO shields and 10-20 LaBr₃(Ce) scintillators •25 HPGe detectors array

Quasi-complete lifetime measurements The ¹²⁰Te nucleus

$\frac{2899.2}{\alpha - \text{DSAM}} \frac{7^{-}}{2461.7}$ $\frac{2461.7}{\alpha - \text{DSAM}} \frac{5^{-}}{\alpha - \text{DSAM}}$ $\frac{2083.9}{\alpha - \text{DSAM}} \frac{3^{-}}{\alpha - \text{DSAM}}$	<u>4818.7 14+</u> HI-DSAM <u>4092.2 12+</u> (HI-DSAM)	<u>4459.8 12+</u> HI-DSAM			
	<u>3364.3 10+</u> FT	<u>3543.6 10+</u> HI-DSAM			
	<u>2652.6 8+</u> a&HI–DSAM	$\frac{2835.4}{(\alpha - \text{DSAM})} \frac{8^+}{6^+}$	$\frac{2940.3}{\alpha - \text{DSAM}} \frac{7^+}{2423.2} \frac{5}{\alpha - \text{DSAM}}$	$\frac{3039.1}{\alpha \& \text{HI-DSAM}} \overset{8^+}{=} \\ \frac{2520.2}{(\alpha - \text{DSAM})} 6^+$	
	<u>1776.2</u> 6 ⁺ RDDS	$\frac{1200 \text{ M}}{\alpha \& \text{HI-DSAM}}$ $\frac{1815.1 \qquad 4^{+}}{\alpha - \text{DSAM}}$	<u>1863.3</u> 3 ⁺ (<i>a</i> -DSAM)	$\frac{1924.7}{\alpha - \text{DSAM}} \frac{4^+}{2^+}$ $\frac{1535.1}{\alpha - \text{DSAM}} \frac{2^+}{2^+}$	$\frac{1613.6}{(\alpha - \text{DSAM})}$ 0 ⁺
	<u>1161.5</u> 4 ⁺ RDDS	$\frac{1201.4}{\alpha - \text{DSAM}} \frac{2^+}{2}$		<u>1103.1</u> 0 ⁺	
	<u>560.4</u> 2 ⁺ RDDS		120-		
	0. 0+	120 I e			

Quasi-complete lifetime measurements by a combination of methods and reactions:

•RDDS and in-beam FT in the ¹¹⁰Pd(¹³C,3n) ¹²⁰Te reaction
•DSAM in the ¹¹⁷Sn(α,n)¹²⁰Te and ¹¹⁰Pd(¹³C,3n) ¹²⁰Te reactions

In-beam Fast-timing lifetime measurements Lifetime of the 10⁺ yrast level in ¹²⁰Te

¹¹⁰Pd(¹³C,3n) ¹²⁰Te @50 MeV
6.5 mg/cm² ¹¹⁰Pd
14 HPGe detectors
11 LaBr₃ scintilators

C. R. Nita, PhD thesis

DSAM lifetime measurements in (α, n) reactions

Goal: lifetime measurements for non-yrast states in Te isotopes

Advantages:

- clean spectra and large cross-sections
- non-yrast states are reasonably well populated
- low contribution from cascade feeding

Difficulties:

- low recoil velocity v/c~0.3%
- nuclear stopping power becomes important, resulting in short stopping time
- short cascades, feeding should be parameterized

Ingredients for DSAM analysis

- Instrumental response function
- Stopping power
- Side-feeding model

Lineshape analysis by Monte Carlo codes :

- COMPA statistical model reaction code,
- GAMMA simulates the slowingdown process and population of discrete states
- \bullet SHAPE χ^2 analysis of experimental and simulated lineshapes
- E. Grodner, A.A. Pasternak et al. Eur. Phys J. A27 (2006) 325

Obtained using ¹⁵²Eu and ⁶⁰Co gamma sources

Side-feeding model

The population of discrete levels from the entry point proceeds mainly through fast E1 transitions

$$f_{E1} = 8.7 \cdot 10^{-8} \sigma_0 E_{\gamma}^2 \Gamma_0^2 / [(E_{\gamma}^2 - E_0^2)^2 + E_{\gamma}^2 \Gamma_0^2]$$

E. Grodner, A.A. Pasternak et al. Eur. Phys J. A27 (2006) 325

SF model parameters deduced from direct comparison of lifetimes measured in the ¹¹⁹Sn(α,n)¹²²Te with values obtained in the ¹²²Te(n,n')¹²²Te (S.F. Hicks et al, Phys. Rev. C71, 034307, (2005))

¹²²Te experiment: validation of the SF model parameters

- 7 lifetimes measured in
 (α,n) compared with (n,n')
 data
- 11 new lifetimes measured or revised
- 25 new levels placed in the level scheme
- Side feeding model confirmed

C. Mihai, A.A. Pasternak et al, Phys. Rev. C 81 034314(2010)

¹²²Te experiment: validation of the SF model parameters

Comparison between lifetimes measured in (α,n) with (n,n') data

¹²⁰Te experiment

Same parameters for the SF model

α -DSAM

HI-DSAM

Adopted value $\tau = 0.46(8)$

¹²⁰Te experiment

Results

- 32 lifetimes measured
- 24 new levels placed in the level scheme

RDDS lifetime measurements in ¹²⁰Te

¹¹⁰Pd(¹³C,3n) ¹²⁰Te @50 MeV
0.7 mg/cm² ¹¹⁰Pd self-supported
Koln-Bucharest plunger device
12 HPGe detectors mounted:
5 @ 37° + 5 @ 143°
1 @ 70° + 1 @ 110°

DDCM analisys : Very preliminary results

2⁺ 560 keV τ=12.2(4)

Distance [Micrometer]

4⁺ 1161 keV τ=4.8(4)

Intruder states in even-even Te

C. Mihai et al, Phys. Rev. C83, 054310, (2011) A.A. Pasternak et al, Eur. Phys. J. A13, 435–448 (2002)

This work

S.F. Hicks et al, Phys. Rev. C71, 034307, (2005) A.A. Pasternak², C. R. Nita¹, D. Bucurescu¹, G. Cata-Danil^{1,3}, I. Cata-Danil¹, R.B. Cakirli^{4,5},
D. Deleanu¹, D. Filipescu¹, D.G. Ghita¹, I. Gheorghe¹, T. Glodariu¹, M. Ivascu¹, L. Kucuk⁵,
R. Lica¹, N. Marginean¹, R. Marginean¹, A. Negret¹, S. Pascu¹, T. Sava¹, L. Stroe¹, G. Suliman¹, R. Suvaiala¹, S. Toma¹, and N.V. Zamfir¹

1- "Horia Hulubei" National Institute for Physics and Nuclear Engineering – IFIN-HH, Bucharest, Romania

2-Cyclotron Laboratory, "A. F. Ioffe" Physical Technical institute, 194021, St. Petersburg, Russia

3-Department of Physics, "Politehnica" University of Bucharest 4-MPI für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 5-Department of Physics, Istanbul University, Turkey

Thank you for your attention