

GAMMA RAY SPECTROSCOPY AT EXTERNAL NEUTRON BEAMS OF THE ILL

Michael Jentschel

Institut Laue-Langevin, Grenoble, France

The exill core team

- ILL: A. Blanc, M. Jentschel, U. Kőster, P.Mutti, T. Soldner, W. Urban
- □ LPSC: G. Simpson
- GANIL: G. De France
- □ **LNL:** C.A. Ur
- IKP Cologne: J.M. Regis for FATIMA/ EXILL

Yields in (n,f) of ²³⁵U and ²⁴¹Pu

Motivation II: nuclear structure close to stability

 (n,γ) – non selective process for population of low spin states

study of collective models, symmetries

- multi-phonon excitations
- shape phase transition
- symmetries
- particle phonon coupling

• study of statistical properties (14 nuclei 6

- level density
- pygmy dipole
- applications
 - radioisotope fabrication

Prompt spectroscopy of fission products

For 100 days of beam time:

Concept: EXogam @ ILL

What was needed:

- EXOGAM clover detectors + HPGe detectors
 - High efficiency for yyy
- Trigger less acquisition system
 - All events are written, all channels ~ 10 kHz event rate
 - Identification of fission products via coincidences
- Well collimated neutron beam
- Target environment allowing (n,f) of ²³⁵U and ²⁴¹Pu
- Combination with LaBr₃:Ce for ultrafast timing
- User community

6 GASP Detectors from LNL

2 Clovers from Lohengrin

The EXILL collaboration

The EXILL Campaign 2012/13

SETUP

From the reactor to PF1b

Neutron Collimation System

Measurement of collimation performance

EXILL in PF1b experimental zone

EXILL chamber: two configurations

EXILL-installation within 10 days

Arrangement of Fatima and EXOGAM detectors

(n, γ) targets

Fission targets

A Full Digital Approach

The EXILL Campaign 2012/13

PERFORMANCES

Tuning EXILL: (n, \gamma) mode

Tuning EXILL: fission mode

Impact of ⁶Li-rubber shielding for ³⁵Cl(n,γ)³⁶Cl

Detector resolution (global) @ 2kHz

P. Mutti

Efficiency of EXOGAM with Add-back

Exogam Clover Relative efficiency : measured up to 9 MeV !!!!!!!!

📩 Clement, GANIL

Efficiency of detectors, 8 x EXOGAM vrs. complete EXILL

Energy resolution of Fatima/EXILL

Timing Performance of FATIMA

Superposition of 96 "TAC" matched time-difference spectra using constant shift values ij

Shift values are instr. constant of Fatima

1000 events:

PRF < 5 ps!

Experimental FATIMA prompt response function (PRF): 50 FWHM=820(10) ps 60-FWHM=260(3) ps start gate: stop gate: 20^{-1} stop gate: start gate: 40 keV 444 keV 20^{-1} 1499 keV 1762 keV 10^{-1} 10^{-10} 3-3--1.5 -0.5 0.5 -1 0 0.5 1.5 1.5 -1.5-0.50 1 t [ns] t [ns] 900 [FWHM] [ps] 800 The FATIMA timing performance 700 (after superposition of 96 time-difference spectra) 600 For Eg> 300 keV and 500 ime-jitter 400 300 ± 200 500 1000 1500 0 2000 2500 3000 E_{γ} [keV]

Data taking

Clover0, Crystal0 rate as a function of time

rate as a function of time

> 95% of beam time dedicated to measurements! \rightarrow 60 Tbyte of data

DPM: Be- vrs Zr-backing

Comparison of 235U on Zr- and Be-backing

Comparison with ²⁴⁸Cm – Spectroscopy of ⁹²Rb

What's next?

Problems of EXILL

- At the limit of man power capabilities (ILL has only 5 nuclear physicists)
- In beam time competition with low energy particle physics
- Limitations with respect to fission material (only 0.7mg of ²⁴¹Pu,...)
- Limitations with respect to target chamber (volume, shape, ...)
- Limitation with respect to additional detectors (tracking of fission products, particle detectors,...)
- Any new campaign similar to EXILL could solve only part of problem
- Alternative approach: a dedicated instrument: FIPPS

FIPPS – schematic layout (version I)

Possible targets : ²²⁹Th, ^{232,233,235}U, ^{238,239,241}Pu, ^{242m}Am, ^{243,245,247}Cm, ^{249,251}Cf

FIPPS – schematic layout (version II)

Rate < 10⁶ fission/s Possible targets : ²²⁹Th, ^{232,233,235}U, ^{238,239,241}Pu, ^{242m}Am, ^{243,245,247}Cm, ^{249,251}Cf

R&D for FIPPS

RED magnet **Fission fragments** from Lohengrin ⊙ B_{RED}

G. Kessedjian, LPSC-Grenoble

Conclusion

- Spectroscopy @ neutron beams yield efficient tool for study of neutron rich isomers or close to stability
- Handling of neutron beam feasible
- Most planned experiments done
- Problems:
 - DPM targets
 - AC-shields
 - Background
- Next step FIPPS: permanent instrument allowing to carry out spectroscopy and fission studies