

High resolution γ-ray spectroscopy at GANIL

- Pairing in self-conjugate nuclei
- EXOGAM as a polarimeter and ⁹¹Ru
- Lifetime measurements
- Conclusions and perspectives

G. de France, GANIL

Pairing in self-conjugate nuclei

Different kind of pairing

- In nuclei far from N=Z, protons and neutrons occupy very different orbitals: the valence nucleons do not interact
- For a pair of nucleon: T≤A/2=1 → T=0,1
- Only nn and pp pairing: identical particles in time reversed orbits (J=0) → T=1 (Pauli).
 This is the <u>isovector</u> pairing involving nn and pp Cooper pairs

Like nucleon pairs: T=1, J=0

Different kind of pairing: along N=Z

- Not anymore true along the N=Z line: protons and neutrons occupy the same orbitals →np pairs
- Pauli principle: « The w.f. of 2 nucleon system must be antisymmetric in the exchange of all the coordinates i.e. space-spin-isospin »

Isoscalar
Badly known...

T=0 vs T=1 strength

Matrix elements particle-particle of magic nuclei+2 nucleons in the same orbit (from E*) as a function of coupling angle (→ independent of the considered orbit)

- 2 « universal » curves for all the orbits: one for T=1 and one for T=0 (except for J=0, T=1)
- For T=1, strength concentrates in J=0 i.e. (j,m)(j,-m)
- When spin increases: pairs are less bound; and less and less

this justifies the description of like nucleon pairs (T=1) by a seniority pairing (i.e. considering only J=0)

 The dispersion of the points on the y-axis points however to limitations of this model

T=0 vs T=1 strength

- For T=0, different situation:
 - the pair with J=2j is as bound as J=1
 - → not correct to consider only the J=1 pair
 - Intermediate spins might play a role
- Except T=1, J=0, the T=0 channel has a larger strength compared to T=1 for two nucleons in the same orbit
 - →No reason to neglect T=0 (a fortiori in N=Z nuclei)...
- How to probe T=0 pairing experimentally?...

Search for seniority violation in an N=Z nucleus

Seniority violation

☐ Profound modification of the level scheme:

_		
8+	3127	
6+	2466	d
		1
4+	1708 20	i.
	878 15	
	$\frac{0}{\mathrm{Pd}}$	1
S	M	

Seniority type

$$10^{+} \ \ 4072 \qquad \qquad 10^{+} \ \ 4065 \ 10^{+} \ \ 4052$$

- □ Predicted effect of the T=0 and T=1 channels
- □ The major influence of T=0

J. Blomqvist et al

EXOGAM-NWall-DIAMANT:

The power of the coupling

EXOGAM-NWall-DIAMANT:The power of the coupling

EXOGAM: 11 Clovers with partial shield. $\epsilon_p \omega \approx 10\%$ for $\epsilon_v = 1.3$ MeV

The Neutron Wall: 50 liquid scintillator detectors $\epsilon_{1n} \sim 23\%$

DIAMANT: 80 CsI(Tl) dets. $\varepsilon_{p \text{ or } \alpha} \sim 66\%$

Neutron Wall performance

n-γ Separation

Zero Cross Over time (Ch.)

Rejection of n scattering

 $\Delta x (mm)$

Neutron Wall performance

• Optimization of the n-selection and n-scattering gates: Maximize known γ -rays in 91 Rh (1p2n channel) at 840 keV while minimizing known γ -rays in contaminant (46 V) and inelastic of 58 Ni (1454 keV)

laboratoire commun CEA/DSM Spiral 2 CNRS

EXOGAM:

First identification of γ -rays in ⁹²Pd

- \Box Three γ -rays firmly identified
- In coincidence with 2n
- Not in coincidence with charged particles
- Mutually coincident
- All possible contaminants excluded
- Unambiguously assigned to ⁹²Pd

Production cross section $\sim 0.5 \mu b$

B Cederwall, F. Ghazi-Moradi, T Back, A Johnson, J. Blomqvist, E Clément, G. de France, R Wadsworth et al,

Nature 469, 68-71 (2011)

⁹²Pd: A new spin aligned np coupling scheme

⁹⁶Cd GSI results

• Observe the decay of identified ⁹⁶Cd to an 15+ isomer in ⁹⁶Ag

⁹⁶Cd GSI results

• Compatible with our interpretation:

J. Blomqvist (2007)

EXOGAM as a polarimeter application to ⁹¹Ru

- To fully characterize the nature of a transition need to measure the DCO ratios (multipolarity) and the linear polarization (electromagnetic nature)
- DCO ratio measurements (multipolarity) in ⁹¹Ru (2p1n) and ⁹¹Tc (3p)

$$R_{DCO} = \frac{I(\gamma_1 at \ 135^{\circ} \ gated \ by \ \gamma_2 at \ 90^{\circ})}{I(\gamma_1 at \ 90^{\circ} \ gated \ by \ \gamma_2 at \ 135^{\circ})}$$

R _{DCO}	Gate on quadrupole	Gate on dipole
Quadrupole	1	1.6
Dipole	0.6	1

Y. Zheng et al., PRC87, 044328 (2013)

EXOGAM as a Compton polarimeter

With
$$a(E_{\gamma}) = \frac{N_{\parallel}(unpolarized)}{N_{\perp}(unpolarized)}$$
 (a(E γ)= normalization factor)

- Polarization sensitivity Q: A=QP , P=linear pqlarization $Q_{point} = \frac{E_{\gamma}}{1 + \alpha + \alpha^2} \qquad \alpha = \frac{E_{\gamma}}{m_e c^2}$
- For a point-like polarimeter:

$$Q = Q_{point}(p_0 + p_1 E_{\gamma})$$

- Realistic polarimeter (integrate over scattering angles):
 with Q, p0 and p1 determined using using g-rays whose linear polarization is known
- Theoretical linear polarization of γ -rays detected at 90°: $P(90^\circ) = \frac{12A_2 + 5A_4}{8 4A_2 + 3A_4}$
- Figure of merit: $F=Q\varepsilon_c$, $\varepsilon_c=\frac{N_\perp+N_\parallel}{2N_{clo}}\varepsilon_{clo}(E_\gamma)$

Polarization sensitivity of EXOGAM

CNRS/IN2P3

Figure of merit:

At 1368 keV, $F_{EXOGAM} = 4.4 \text{ x } F_{EUROGAM}$

Complete characterization of transitions

The new level scheme of 91Ru

- Firm assignments of spin differences and parity (g.s. not measured)
- Several new transitions/states
- Analysis of low-energy positive parity states seems to indicate the transition from $(\pi^2 v^{-1})$ alignment to (v^{-3})

Lifetime measurements: the Zn and thePd-Zr regions

plunger at GANIL (VAMOS +EXOGAM)

laboratoire commun CEA/DSM SDITAL CNRS/IN2P3

RDDS method

$$Q_{ij}(x) = \frac{I_u(x)}{I_u(x) + I_s(x)}$$

	This experiment		Previous experiments	SM JUN45	SM LNPS	5DCH Gogny D1S
⁷⁰ Zn	τ [ps]	$B(E2; J \to J - 2) [e^2 fm^4]$				
2+	5.0 ± 0.4	303 ± 24	$286_{-68}^{+131} [1] 305 \pm 15 [2]$	302	327	457
4+	4.8 ± 1.0	286 ± 61	$475_{-147}^{+584} [1] 720 \pm 70 [3]$	394	345	861

[1] Louchart et al., submitted; [2] B Pritychenko et al., At. Data Nucl. Data Tables 98_798;

[3] P. Mücher et al., PRC79_054310

⁷² Zn	This ex	periment	Previous experiments	SM: JUN45	SM: LNPS	5DCH Gogny D1S
, -ZII	τ [ps]	$B(E2; J \to J - 2) [e^2 fm^4]$				
2+	19.4 ± 5.5	354 ± 100	392^{+34}_{-29} [1] 348 ± 42 [2] 385 ± 39 [3]	336	376	392
4+	6.4 ± 2.4	292 ± 110	361 ⁺⁵⁷ ₋₄₇ [1]	349	471	768
6+	3.0 ± 1.2	133 ± 51	134 ⁺⁵⁷ ₋₃₁ [1]	228	437	1111

[1] Louchart et al., submitted; [2] S. Leenhardt et al., EPJ A 14_1; [3] M. Niikura et al., PRC85_054321

B(E2) systematics in even-even Zn

$B(E2:2^+ \rightarrow 0^+)$

 Calcs and measurements compatible

$B(E2:4^+\rightarrow 2^+)$

- Coulex larger values
- HFB overestimates B(E2)s (x3)
- SM more compatible with data
- Need to remeasure ^{70,74}Zn

Lifetimes reported for the first time:

State	E _y [keV]	τ [ps]
1/2-, 3/2-	489.7	7.3 ± 2.0
(3/2)-	674.8	≤ 0.6
unknown	991(3)	≤ 0.6

State	$\mathrm{E}_{\gamma} \ [\mathrm{keV}]$	τ [ps]
(3/2)-	834.5	≤ 0.5
$5/2_2^-$	649.4	≤ 0.6
unknown	1109(3)	3.8 ± 1.1

Lifetimes of FF

E604 Experiment: L. Grente et al

Degrader ²⁴Mg 5 mg/cm²

 $\theta=20^{\circ}$

- Fusion-fission reaction ²³⁸U + ⁹Be
- Inverse kinematics

Dipole

Excitation energy ~45 MeV

Cologne plunger device 7 distances : 35 →1550 μm τ ~ 1- 100 ps

EXOGAM 10 Ge detectors

Quadrupoles

Drift chambers - x,y,θ,ϕ

MWPPAC - ToF

Ionisation chambers- ΔE

Silicon detectors- \mathbf{E}_{res}

VAMOS spectrometer

Identification in Q, M et Z of the fission fragments

Collectivity in the Pd-Zr region

Measured yields

Measured relative yields of the detected fission fragments

→ Talk of MD Salsac

Courtesy L. Grente

Mo-Ru-Pd spectra

Courtesy L. Grente

Ru

Pd

Conclusions

- Level scheme established for the 1st time in ⁹²Pd. The violation of the seniority-like level scheme shows evidence for a strong role of T=0. Confirmed by the decay of ⁹⁶Cd in GSI.
- The performances of the EXOGAM array as a polarimeter have been measured
- New transitions/states have been observed in ⁹¹Ru and the spin and parity have been firmly established for a number of states.
- Lifetimes in Zn: compatible with recent data and for the first time in odd n-rich Zn
- Necessary to extend systematics to heavier Zn isotopes and to remeasure ⁷⁰Zn
- The particle-core coupling approach indicates a coexistence of s.p. and collective states in odd Zn
- Lifetimes of FF in the mass A~100 have been measured for the first time; allow to study the evolution of collectivity as a fucntion of (N,Z) and also with J

Perspectives

- ⁹⁶Cd experiment (Feb. 2014?)
- Analysis of EXILL data → M Jentschel's talk
- AGATA at GANIL → E Clément's talk
- Upgrade of SPIRAL1
- SPIRAL2

Thank you for your attention

Ciao Enrico