Study of shape transitions in the neutron-rich Os isotopes

Nuclear Structure Physics with Advanced GammaDetector Arrays

V. Modamio ${ }^{2}$, J.J. Valiente-Dobón ${ }^{2}$, D. Mengoni ${ }^{1}$, S. Lunardi ${ }^{1}$, T. Alexander ${ }^{3}$, G. de Angelis ${ }^{2}$, N. Ashwood ${ }^{4}$ M. Barr ${ }^{4}$, D. Bazzacco ${ }^{1}$, P.G. Bizzeti ${ }^{5}$, A.M. Bizzeti-Sona ${ }^{5}$, S. Bottoni ${ }^{6}$, M. Bowry ${ }^{3}$, A. Bracco ${ }^{6}$, F. Browne ${ }^{7}$, M. Bunce ${ }^{3}$, A. Gadea ${ }^{8}$, F. Camera ${ }^{6}$, L. Corradi ${ }^{2}$, F.C.L. Crespi ${ }^{6}$, E. Farnea ${ }^{1}$, E. Fioretto ${ }^{2}$, A. Gottardo ${ }^{2}$, Tz. Kokalova ${ }^{4}$, W. Korten ${ }^{9}$, A. Kusoglu ${ }^{10}$, S. Lenzi ${ }^{1}$, S. Leoni ${ }^{6}$, C. Michelagnoli ${ }^{1}$, T. Mijatovic ${ }^{11}$, G. Montagnoli ${ }^{1}$, D. Montanari ${ }^{2}$, D.R. Napoli ${ }^{2}$, Zs. Podolyák ${ }^{8}$, G. Pollarolo ${ }^{12}$,F. Recchia ${ }^{1}$, O.J. Roberts ${ }^{7}$, E. Sahin ${ }^{2}$, M.-D. Salsac ${ }^{9}$, F. Scarlassara ${ }^{1}$, M. Sferrazza ${ }^{13}$, A.M. Stefanini ${ }^{1}$, S. Szilner ${ }^{11}$, C.A. Ur ${ }^{1}$, J. Walshe ${ }^{4}$, C. Wheldon ${ }^{4}$
${ }^{1}$ Dipartimento di Fisica e Astronomica and INFN, Sezione di Padova, Italy. ${ }^{2}$ INFN, Laboratori Nazionali di Legnaro, Italy. ${ }^{3}$ Department of Physics, University of Surrey, United Kingdom. ${ }^{4}$ School of Physics and Astronomy,

University of Birmingham, United Kingdom. ${ }^{5}$ Dipartimento di Fisica and INFN, Sezione di Firenze, Italy. ${ }^{6}$ Dipartimento di Fisica and INFN, Sezione di Milano, Italy. ${ }^{7}$ University of Brighton, United Kingdom. ${ }^{8}$ Instituto de Fisica Corpuscular, CSIC, Valencia, Spain. ${ }^{9}$ CEA/Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette, France. ${ }^{10}$ Istanbul University, Turkey. ${ }^{11}$ Institut Ruder Bošković, Zagreb,
Croatia. ${ }^{12}$ Dipartimento di Fisica and INFN, Sezione di Torino, Italy. ${ }^{13}$ University of Brussels, Belgium.

Outline

Motivation - The neutron-rich W, Os and Pt isotopes

Experimental Setup

Data Analysis

Preliminary Results for ${ }^{196}$ Os

Conclusions and Outlook

The neutron-rich W , Os and Pt isotopes

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Region studied using both stable and radioactive beams:

No spectroscopic information about ${ }^{196}$ Os

The neutron-rich W , Os and Pt isotopes

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Region studied using both stable and radioactive beams:

No spectroscopic information about ${ }^{196}$ Os

The neutron-rich W , Os and Pt isotopes

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Region studied using both stable and radioactive beams:

No spectroscopic information about ${ }^{196}$ Os

The neutron-rich W , Os and Pt isotopes

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Region studied using both stable and radioactive beams:

No spectroscopic information about ${ }^{196}$ Os

Shape transitions in the neutron-rich W , Os and Pt isotopes

W Sudden prolate to oblate shape transition predicted for $\mathrm{A}=190$-192
P. Sarriguren et al., Phys. Rev. C 77, 064322 (2008).

Pt Transition region starts with $\mathrm{A}=192$ and persists till $\mathrm{A} \approx 200$ with γ-soft ground states T. Möller, HK 20.8. P. D. Bond et al., Phys. Lett. B130, 167 (1983).

Os Prolate deformed groundstate of ${ }^{194} \mathrm{Os}$, oblate deformed groundstate for ${ }^{198} \mathrm{Os}$ found.
C. Wheldon et al., Phys. Rev. C63, (2000) 011304(R). Zs. Podolyák et al. Phys. Rev. C79, (2009) 031305.

Data taken from: Nuclear Da风a Database NUDAT 2, http://www.nndc.bnl.gov/nudat2. N

Setup

The experiment was performed at LNL, Italy using

- a $426 \mathrm{MeV}^{82} \mathrm{Se}$ beam
- a $2 \mathrm{mg} / \mathrm{cm}^{2}$, self-supporting ${ }^{198} \mathrm{Pt}$ target
- AGATA Demonstrator (5 Cluster)
- large-acceptance magnetic spectrometer PRISMA@57 ${ }^{\circ}$ detecting the lighter beam-like recoils
- DANTE heavy ion detector (for additional particle-particle- $\gamma-\gamma$ coincidences without particle identification)

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

MWPPAC

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

MWPPAC

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Particle Identification using PRISMA

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

$\xrightarrow[\mathrm{E}]{ }$

Ionization Chamber

Particle Identification using PRISMA

- Event by event particle identification using PRISMA
- Only the lighter beam-like fragment is unambiguously identified
- Event by event Doppler correction for the beam-like ions
- Heavier ions of interest are partly detected in the DANTE array
- Need to reconstruct angle and velocity of target-like ions

Doppler Correction using the Binary Partner Method

- Reconstruct the velocity vector of the un-detected heavier ion event by event using
\square Relativistic two-body reaction
\square Exact masses
\square Q-value of reaction
\square Energy loss in the target for all participants
\square Assumption:
No particle evaporation
- Target-like recoil is stopped in the reaction chamber \Rightarrow
Possibility to measure decay of isomers

Preliminary Spectrum of ${ }^{82} \mathrm{Se}$ and ${ }^{198} \mathrm{Pt}$

- Good Doppler correction with
\square FWHM of 6.21 keV for the $2_{2}^{+} \rightarrow 0_{g s}^{+}$of ${ }^{82} \mathrm{Se}$ at $1731.5 \mathrm{keV}(3.59 \%)$
\square FWHM of 4.18 keV for the $2_{1}^{+} \rightarrow 0_{g s}^{+}$of ${ }^{198} \mathrm{Pt}$ at $407.21 \mathrm{keV}(1.02 \%)$

Transitions tentatively assigned based on previously reported gamma ray energies.
H. Xiaolong, Nuclear Data Sheets 110, 2533 (2009). J. K. Tuli, Nuclear Data Sheets 98, 209 (2003).

Reconstructing Q-Value

- Two-Proton transfer channel
- Neutron evaporation for beam-like and target-like fragments leads to a misinterpretation of the measured gamma rays

- Reconstruct Q-value based on momentum conservation
A.B. Brown et al., Phys. Rev. 82, 159 (1951)

22 of 28

Reconstructing Q-Value

- Two-Proton transfer channel
- Neutron evaporation for beam-like and target-like fragments leads to a misinterpretation of the measured gamma rays

- Reconstruct Q-value based on momentum conservation
A.B. Brown et al., Phys. Rev. 82, 159 (1951)

23 of 28

Spectra for ${ }^{196}$ Os

- Cut on the reconstructed Q-value reduces contribution of nuclei produced by neutron evaporation
- Transition ($2_{1}^{+} \rightarrow 0_{g s}^{+}$) was observed for the first time
- Statistics is high enough for $\gamma-\gamma$ coincidences

Delayed Gamma Ray Spectroscopy

- No collimators and BGOs for AGATA \Rightarrow higher sensitivity for gamma rays emitted from stopped ions out of target position.
- Careful time alignment of all 555 channels
- Tagging of isomer by binary partner

Example: Gate on ${ }^{82} \mathrm{As}$ (binary partner ${ }^{198} \mathrm{Au}$)

Conclusions and Outlook

- A multi-nucleon transfer reaction was used to populate medium-to-high spin states in the neutron-rich nuclei around $A=190$.
- Reconstructing the velocity vector for the undetected heavier target-like fragment provides a good Doppler correction ($\approx 1 \%$).
- A cut on the reconstructed Q -value reduces contribution in the spectra due to nuclei produced by neutron evaporation.
- This experiment provides for the first time spectroscopic information on ${ }^{196} \mathrm{Os}$ and will help to elucidate the shape evolution in the neutron-rich Os nuclei
- Data analysis still in progress. Especially $\gamma-\gamma$ (prompt - delayed).
- Additional Experiment at VAMOS and Exogam (April 2012).

Thank you for your attention

Thank you for your attention

