

Study of shape transitions in the neutron-rich Os isotopes

Nuclear Structure Physics with Advanced GammaDetector Arrays

P.R. John¹, V. Modamio², J.J. Valiente-Dobón², D. Mengoni¹, S. Lunardi¹, T. Alexander³, G. de Angelis², N. Ashwood⁴, M. Barr⁴, D. Bazzaco¹, P.G. Bizzeti⁵, A.M. Bizzeti-Sona⁵, S. Bottoni⁶, M. Bowry³, A. Bracco⁶, F. Browne⁷, M. Bunce³, A. Gadea⁸, F. Camera⁶, L. Corradi², F.C.L. Crespi⁶, E. Farnea¹, E. Fioretto², A. Gottardo², Tz. Kokalova⁴, W. Korten⁹, A. Kusoglu¹⁰, S. Lenzi¹, S. Leoni⁶, C. Michelagnoli¹, T. Mijatovic¹¹, G. Montagnoli¹, D. Montanari², D.R. Napoli², Zs. Podolyák⁸, G. Pollarolo¹², F. Recchia¹, O.J. Roberts⁷, E. Sahin², M.-D. Salsac⁹, F. Scarlassara¹, M. Sferrazza¹³, A.M. Stefanini¹, S. Szilner¹¹, C.A. Ur¹, J. Walshe⁴, C. Wheldon⁴

¹Dipartimento di Fisica e Astronomica and INFN, Sezione di Padova, Italy,²INFN, Laboratori Nazionali di Legnaro, Italy.³Department of Physics, University of Surrey, United Kingdom.⁴School of Physics and Astronomy, University of Birmingham, United Kingdom.⁵Dipartimento di Fisica and INFN, Sezione di Firenze, Italy.⁶Dipartimento di Fisica and INFN, Sezione di Milano, Italy.⁷University of Brighton, United Kingdom.⁸Instituto de Fisica Corpuscular, CSIC, Valencia, Spain.⁹CEA/Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette, France.¹⁰Istanbul University, Turkey.¹¹Institut Ruder Bošković, Zagreb, Croatia.¹²Dipartimento di Fisica and INFN, Sezione di Torino, Italy.¹³University of Brussels, Belgium.

Outline

Motivation - The neutron-rich W, Os and Pt isotopes

Experimental Setup

Data Analysis

Preliminary Results for ¹⁹⁶Os

Conclusions and Outlook

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

- Existence of Isomers
- Different shapes in their ground-state prolate, oblate, triaxial, and spherical
- Shape transitions
- Region is a crucial testing ground for nuclear models

Chart taken from: Nuclear Data Database NUDAT 2, http://www.nndc.bnl.gov/nudat2.

Shape transitions in the neutron-rich W, Os and Pt isotopes

W Sudden prolate to oblate shape transition predicted for A=190-192

P. Sarriguren et al., Phys. Rev. C 77, 064322 (2008).

- Pt Transition region starts with A=192 and persists till $A \approx 200$ with γ -soft ground states T. Möller, HK 20.8. P. D. Bond et al., Phys. Lett. B130, 167 (1983).
- Os Prolate deformed groundstate of ¹⁹⁴Os, oblate deformed groundstate for ¹⁹⁸Os found.

C. Wheldon et al., Phys. Rev. C63, (2000) 011304(R). Zs. Podolyák et al. Phys. Rev. C79, (2009) 031305.

Setup

The experiment was performed at LNL, Italy using

- a 426 MeV ⁸²Se beam
- a 2 mg/cm², self-supporting ¹⁹⁸Pt target
- AGATA Demonstrator (5 Cluster)
- large-acceptance magnetic spectrometer PRISMA@57°
 detecting the lighter beam-like recoils
- DANTE heavy ion detector (for additional particle-particle-γ-γ coincidences without particle identification)

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

Measure

- Entrance and exit position
- Time of flight
- Energy loss
- Total energy

Reconstruct

- Trajectory
- Velocity vector
- Z, A, q

- Event by event particle identification using PRISMA
- Only the lighter beam-like fragment is unambiguously identified
- Event by event Doppler correction for the beam-like ions
- Heavier ions of interest are partly detected in the DANTE array
- Need to reconstruct angle and velocity of target-like ions

Yield (beam-like Recoils

Doppler Correction using the Binary Partner Method

- Reconstruct the velocity vector of the un-detected heavier ion event by event using
 - Relativistic two-body reaction
 - Exact masses
 - Q-value of reaction
 - Energy loss in the target for all participants
 - Assumption: No particle evaporation
- Target-like recoil is stopped in the reaction chamber ⇒ Possibility to measure decay of isomers

Preliminary Spectrum of ⁸²Se and ¹⁹⁸Pt

Good Doppler correction with

□ FWHM of 6.21 keV for the $2^+_2 \rightarrow 0^+_{gs}$ of ⁸²Se at 1731.5 keV (3.59‰) □ FWHM of 4.18 keV for the $2^+_1 \rightarrow 0^+_{gs}$ of ¹⁹⁸Pt at 407.21 keV (1.02%)

Transitions tentatively assigned based on previously reported gamma ray energies.

H. Xiaolong, Nuclear Data Sheets 110, 2533 (2009). J. K. Tuli, Nuclear Data Sheets 98, 209 (2003).

Reconstructing Q-Value

- Two-Proton transfer channel
- Neutron evaporation for beam-like and target-like fragments leads to a misinterpretation of the measured gamma rays
- Reconstruct Q-value based on momentum conservation

```
A.B. Brown et al., Phys. Rev. 82, 159 (1951)
```


Reconstructing Q-Value

- Two-Proton transfer channel
- Neutron evaporation for beam-like and target-like fragments leads to a misinterpretation of the measured gamma rays
- Reconstruct Q-value based on momentum conservation

A.B. Brown et al., Phys. Rev. 82, 159 (1951)

⁸⁴ Kr ⁸³ Br ⁸² Se two-proton transfer ¹⁹⁸ Pt ¹⁹⁸ Pt ¹⁹⁷ Ir ¹⁹⁶ Os

Spectra for ¹⁹⁶Os

- Cut on the reconstructed Q-value reduces contribution of nuclei produced by neutron evaporation
- Transition $(2^+_1 \rightarrow 0^+_{gs})$ was observed for the first time
- Statistics is high enough for $\gamma-\gamma$ coincidences

Delayed Gamma Ray Spectroscopy

- No collimators and BGOs for AGATA ⇒ higher sensitivity for gamma rays emitted from stopped ions out of target position.
- Careful time alignment of all 555 channels
- Tagging of isomer by binary partner

Example: Gate on ⁸²As (binary partner ¹⁹⁸Au)

Conclusions and Outlook

- A multi-nucleon transfer reaction was used to populate medium-to-high spin states in the neutron-rich nuclei around A = 190.
- Reconstructing the velocity vector for the undetected heavier target-like fragment provides a good Doppler correction (~ 1%).
- A cut on the reconstructed Q-value reduces contribution in the spectra due to nuclei produced by neutron evaporation.
- This experiment provides for the first time spectroscopic information on ¹⁹⁶Os and will help to elucidate the shape evolution in the neutron-rich Os nuclei
- Data analysis still in progress. Especially $\gamma \gamma$ (prompt delayed).
- Additional Experiment at VAMOS and Exogam (April 2012).

Thank you for your attention

Thank you for your attention