Distributed storage works update

SuperB Collaboration Meeting Pisa, Sept. 20th 2012

Paolo Franchini (CNAF) for the distributed storage group

Summary

Overview on WAN environment

HTTP data access test

Data access library development

Wide Area Network environment

Distributed resources

- Resources comparable with ATLAS and CMS experiments for the 2011 runs
- Several computing sites in Europe and North America, under a Grid infrastructure
- LHC Computing Grid architecture adopted
- LHC Tier classification: few Tier1s and several Tier2s
- Distributed storage R&D
 - Exploit WAN data access during the data model definition
 - Dynamic and remote data access vs data driven computation paradigm

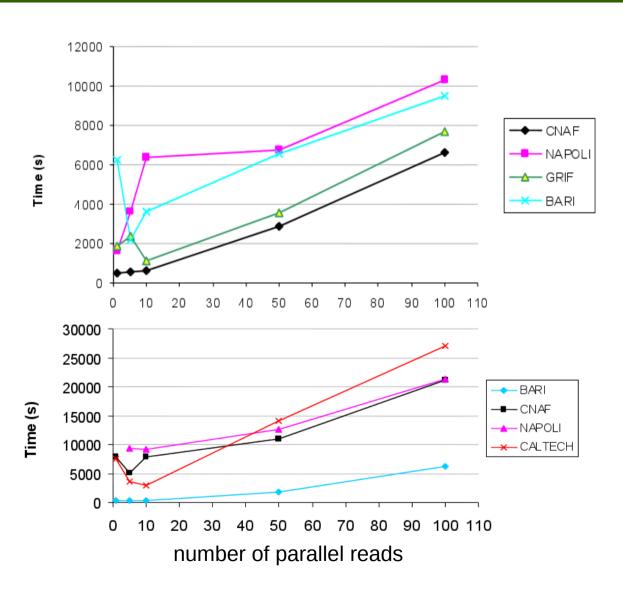
WAN data access

- Experiment use cases:
 - interactive usage of SuperB data
 - analysis code writing and debugging
 - analysis tasks executed on non SuperB resources
 - job execution on small sites like Tier3s
 - safeness in case of storage failure
- Network protocols
 - xrootd and HTTP:
 - support posix-like calls
 - capabilities of work through routers and firewalls
 - caching and pre-fetching mechanism
 - supported by ROOT framework

HTTP data access test

Test goal:

- measure the latency period due to the increase number of parallel read stream
- measure the latency period due to the increase of round trip time elapsed between source and destination


Test layout definition:

- 1, 5, 10, 50 and 100 parallel set of read streams
- each stream reads a random files according to a trace file obtained from an analysis application
- 250 compressed root files, 500 MB each
- sources: INFN-T1 and INFN-Bari
- destinations: INFN-T1, INFN-Bari, INFN-Napoli, GRIF, Caltech
- measured the time of the curl execution

HTTP data access test: results

Data source: INFN-T1

Data source: INFN-BARI

HTTP data access test: results

The network latency influences the read stream operations for all the routes

 The link congestions affect the case of single read-stream also on short routes

 The dips of the curves can be the effects of a specific link-to-link overload

Data access library

R&D for a library permitting to shape the data access

Features:

- intelligent pre-fetching and buffering algorithms
- logical file name map with different physical storage URI
- possibility of support to unsupported ROOT storage protocols
- read-head buffer and caching mechanism in order to solve the overhead

Library approaches

- High level: library wrapper of ROOT data access/download methods
 - pros: simple deployment inside the experiment framework
 - cons: users need to uses new access methods
- Low level: new file protocol developing a ROOT class
 - pros: no impact for the final user
 - cons: need an ad-hoc ROOT implementation
- Configuration driven: need a ROOT configuration interface in order to change the data access according to a set of parameters.

Library state-of-art: libSbNet

- The library input is the catalog name (1fn://) of the file that must be used in the analysis
- The library output is the local file name (file://) that ROOT can use in the analysis
- In order to obtain the output the library first checks the default storage element, defined in the environment variable VO_SUPERBVO_ORG_DEFAULT_SE.
- If this SE returns a valid file:// TURL the work is done...

Library state-of-art: libSbNet

- If the default SE has some problem the library uses the lcg API (lcg_lr) to obtain the list of the file replicas, sorts them in network speed order, then asks every SRM a valid file:// TURL
- If the file:// protocol is not available, then falls down to slower protocols, first http:// (not yet implemented) and eventually gsiftp://
- In the gsiftp:// case the lib copies the file locally and returns his full local path at the caller.
- It's up to the lib caller to delete this temporary file at the end of its use.