The new variable resolution Associative Memory for Fast Track finding aka AMchip04

AM CMS-FTK meeting Sep 10-11, 2012, Pisa

Alberto Annovi

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

FTK algorithm: Pattern recognition & Track fitting

• Pattern recognition – find track candidates with enough Si hits

- O(10⁹) prestored patterns simultaneously see the silicon hits leaving the detector at full speed.
- Based on the Associative Memory chip (content-addressable memory) initially developed for the CDF Silicon Vertex Trigger (SVT).

AM working principle

Generatig the pattern bank

with less patterns (hardware) BUT more fakes More patterns (hardware) for same efficiency less fakes

Pattern efficiency

<# matched patterns/event @ 3E34> = 342k

<# matched patterns/event @ 3E34> = 40k

Pattern efficiency

discretiziation effects

Layers are not aligned

Would use 4 patterns locations instead of 1 without variable resolution

AMCHIP04: VARIABLE RESOLUTION

A. Annovi - AM Sep 11th 2012

The patterns: a different point of view

Many bits variable resolution

1 bit variable resolution

Many bits variable resolution

AM chips from 1992 to 2005

A. Annovi - AM Sep 11th 2012

- (90's) Full custom VLSI chip 0.7μm (INFN-Pisa)
- 128 patterns, 6x12bit words each
- 384k patterns (SVT total)

F. Morsani et al., "The AMchip: a Full-custom MOS VLSI

Associative memory for Pattern Recognition", IEEE Trans. on Nucl. Sci., vol. 39, pp. 795-797, (1992).

On the opposite side: FPGA for the same AMchip

P. Giannetti et al. "A Programmable Associative Memory for Track Finding", Nucl. Intsr. and Meth., vol. A413/2-3, pp. 367-373, (1998).
G Magazzu' I progetto standard cell presented @ LHCC (1999)

In the middle: **Standard Cell 0.18** μ m (INFN-Pisa-Ferrara) \rightarrow 5000 pattern/chip Amchip SVT upgrade total: 6M patterns

L. Sartori, A. Annovi et al., "A VLSI Processor for Fast Track Finding Based on Content Addressable Memories", **IEEE Transactions on Nuclear Science,** Volume 53, Issue 4, Part 2, Aug. **2006** Page(s):2428 - 2433

AMchip03 array (AM board)

AMchip Comparison

	AMchip03	AMchip04	effect			
Technology	180nm	65nm LP	X8 pattern density			
Clock freq.	50MHz	100MHz	Faster, higher power cons.			
Die size	10x10mm ²	12x12mm ²	X1.5 patterns (prototype 3.5x4mm ²)			
Core voltage	1.8V	1.2V	Lower power cons.			
Core power	1.3W	2W	At 40MHz and 100MHz respec.			
Full custom	No	Yes	X2 pattern density			
Layers	6	8	³ ⁄ ₄ pattern density			
Patterns/chip	5k	80k	8k in prototype			
Ternary layers	N/A	3 to 6	Better S/N with variable resolution			
Bits/layer	18	15				
Input hit b/w	4.3	12	Gbit/s			
		2 event buf.	readout 1 st , load 2 nd event			

The hard part: FTK goal 1 billion pattern for LHC phase I (80k patt * 16k chips) push pattern density to the limit, keep power under control despite x16 patterns x8/6 layers and 40MHz --> 100MHz

would mean x50 power consumption with same design & technology

AM chip04 functions/specs

- Store pre-calculated trajectories (patterns)
 - Each pattern: 8 positions (numbers or words) one for each layer
- Compare patterns with incoming data
 - Detectors hits for one event
- For each event readout patterns
 - with enough hits 8/8, 7/8 or 6/8
- For each pattern readout:
 - Pattern address (ID) + bitmap of fired layers
- Configuration and pattern loading through JTAG interface

CAM layer timing diagram

A. Annovi - AM Sep 11th 2012

Associative Memory Layer

To save power we have used two different match line driving scheme:

- Current race scheme (dummy layer timing)
- Selective precharge scheme

A. Annovi - AM Sep 11th 2012

Current race and selective - precharge schemes

Fig. 5. Current-race ML sensing scheme.

Fig. 16. Sample implementation of the selective-precharge matchline technique [43]. The first cell on the matchline is a NAND cell, while the other cells are NOR cells. Precharge occurs only in the case where there is a match in the first cell. If there is no match in the first cell, the precharge transistor is disconnected from the matchline, thus saving power.

Scheme from: *"Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey"*, Kostas Pagiamtzis and Ali Sheikholeslami IEEE Journal of Solid-State Circuits, Vol. 41, NO. 3, March 2006

Scheme from: "A ternary content-addressable memory (TCAM) based on 4T static storage and including a Current-Race sensing scheme", Ali Sheikholeslamiet Al. IEEE Journal of Solid-State Circuits, Vol. 38, NO. 1, January 2003

Power consumption rough estimates

We use the nominal simulation condition: Transistor models : Typical Power supply : 1.2 V Temperature : 27 °C Frequency :100 MHz

Compatible with first measurements

These values do not take into account the standard cells part of the chip and the on chip power supply network distribution parasitic and other parasitic.

Memory state	Mean (mW)	Max (mW)	RMS (mW)		
Write	23.04	557.57	28.12		
Quiescent	21.89	22.09	21.88		
Don't match	63.36	720.32	113.41		
Match 1 out of 16 patterns	70.96	814.18	123.55		
Match 1 out of 8 patterns	79.20	868.03	140.03		
Match 1 out of 4 patterns	91.87	1045.44	172.34		

Appoximate consumption 80mW / 8kpattern / 100MHz ~= 100µW / kpattern / MHz

+ plus standard cell logic

A. Annovi - AM Sep 11th 2012

Ternary CAM Cell with two NOR type cells

storage static RAM cells	storage scheme stored values						
vdd vdd q1 vdd q1 vdd q1 vdd q1 vdd q1 vdd q1 vdd q1 vdd q1 vdd q1 vdd q2 vdd q q vdd q q vdd q vdd q vdd q vdd q vdd q vdd q vdd vdd	presente	q1q2 0 01 1 10 • 00 (a) retrieval scheme presented values encoded value in binary CAM					
Fig. 8. Two adjacent static binary CAM cells.	value		bina	ry st	atic	CAMS.	operation
		c1c2	611	blr	621	b2r	l r
Can use from 3 to 6 ternary cells per layer	0	01	0	1	0	0	0 M*
Variable resolution 1.8 up to 1.64	1	10	0	0	0	1	M 0
variable resolution 1-6 up to 1-64.	•	11	0	0	0	0	M M

*M is the masking of a bit operation common in commercial binary CAMS.

(b)

Images from: "Encoding Don't Cares in Static and Dynamic Content-Addressable Memories", Sergio R. Ramirez-Chavez, IEEE Transactions on circuits and system-II: Analog and Digital Signal Processing, Vol. 39 NO. 8, August 1992

Fig. 9. Encoding and retrieval schemes for don't-care in two static binary CAM's cells with masking capability. (a) Encoding scheme. (b) Retrieval scheme.

CAM cell configuration

- 18 CAM bits per layer: 4 NAND and 14 NOR
 NOR pairs can make a ternary cell
- Default 12 bits + 3 ternary (minimum)
 - 15 bits per input bus (maximum)
 - (14:7) NOR, (6:3) 4 NAND, (2:0) 3 NOR-pairs
- 6 bits + 6 ternary (maximum)
 - Use only 12 bits per input bus
 - (11:10) NOR, (9:6) 4 NAND, (5:0) 6 NOR-pairs
- Ternary cells (NOR pairs) mapped to LSBs
- NAND cells are mapped to LSBs after the ternary cells, when they don't match small power consump.

AMCHIP04: MAJORITY LOGIC

Layer matches from CAM layers are stored in a FF just before resetting the CAM layers. We can load an event in the CAM layers while we are reading the patterns found in the previous event.

Prototype Chip Layout

Memory Block Layout

64 patterns (vertically)

AMchip TOP level

AMchip TOP level

First AMchip 04 tests

- AMchip 04 tests in progress
- All test vectors passed sucessufully @ 50 MHz
- Some test performed and passed at 100 MHz
- Next: run all test vectors @100MHz
- Next²: characterize the device power/speed/ yield

FTK AMchips plans

- AMchip04 (MPW)
 - 8k patterns with 3-6 ternary cells / layer (die 14mm²)
 - 8x15 bits inputs up to 100MHz
 - 250mW core consumption @ 100MHz
- Miniasic (TBC) 2013
 - IO with 2Gbs serial link / layer
 - FlipChip BGA 21x21 mm² (TBC)
- MPW: AMchip05 (TBC) 2013
 - 32k patterns with 2Gbs/layer serial IO
 - FlipChip BGA 21x21 mm² (TBC)
- Full mask run: AMchip06 (TBC) 2015
 - 64k patterns with 2Gbs/layer serial IO
 - FlipChip BGA 21x21 mm² (TBC)

PQ208 30x30 mm²

Schedule is aggressive missing contingency...

AMchip04-06 for L1 triggers

- Can we use AMchip04-06 for L1 triggers?
 - In principle yes would save a lot of time/money
 - But 65nm technology and specs choosen for FTK and 2015 production
- Is it a good idea?
 - Depends on your requirements
 - # patterns / chip, IO speed
 - # bits/layer, # layers
- Need to know your requirements now

Summary

- Designed and tested new Associative Memory
- Prototype main goal: verify functionality of new features and full-custom cell
- First application: ATLAS Fast-Tracker
- Special care to minimize power consumption & increase pattern density
- NEW: introduce powerful variable resolution pattern-matching !!!
 - any coincidence based trigger can profit
 - equivalent to a factor 3-5 extra patterns or more