Working Group on radiative corrections and generators for low energy hadron cross sections and luminosity 27-28 September 2012, Mainz

Study of processes via ry interactions at BESIII

Elisabetta Prencipe - Johannes Gutenberg University of Mainz

Outline

- Introduction
- Motivation
-The BESIII experiment
- Two-photon reactions

Feasibility studies

- Experimental results (WORK IN PROGRESS)
- Conclusion and Future Plans

Introduction

- Transition form factors are important ingredients to understand the nature of mesons and their underlying quark/gluon structures
- Several reasons to be interested in this field:
* quantify the Standard Model value of the anomalous momentum of the muon
* high precision measurements are possible and theoretical calculations are highly needed

Hadronic Light-by-Light

Scattering

$$
\begin{aligned}
a_{\mu}(\text { had }), L b L= & (10.5 \pm 2.6) \cdot 10^{-10}[1] \\
& (11.6 \pm 4.0) \cdot 10^{-10}[2] \\
& (21.6 \pm 9.1) \cdot 10^{-10}[3]
\end{aligned}
$$

[1] J Prades et all, Phys. Rev. Lett. 75, 1447 (1995)
[2] A. Nyffler et all., Phys. Rev. D 65, 073034 (2002)
[3] C.S. Fisher et all, arXiV:1012.3886, 2011

Motivation

- Experimental results are not in agreement for high Q^{2} (BaBar, Belle)
-For medium-low Q^{2} higher precision is needed
- BESIII can give an important contribution for $\mathrm{Q}^{2}<10 \mathrm{GeV}^{2}$

The BES III experiment

- BES III detector at BepC (Beijing, China) offers a unique opportunity to perform light hadron physics analyses and transition form factor measurements.

How the form factor can be measured

- Two-photon production of the meson
- $-\mathrm{S}+\mathrm{M}^{2}<\mathrm{q}_{1}{ }^{2}<0, \mathrm{q}_{2}{ }^{2} \approx 0, \quad \mathrm{Q}^{2} \equiv-\mathrm{q}_{1}{ }^{2}$
- d σ / dQ^{2} falls as $1 / \mathrm{Q}^{6}$
- At $V_{s}=10.6 \mathrm{GeV}$ for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \pi^{0}$ $\mathrm{d} \sigma / \mathrm{dQ}^{2}\left(10 \mathrm{GeV}^{2}\right) \approx 10 \mathrm{fb} / \mathrm{GeV}^{2}$
- Annihilation process $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{P} \mathrm{\gamma}$
- $\mathrm{Q}^{2}=\mathrm{S}>\mathrm{M}^{2}$
- $\sigma \propto 1 / S^{2}$
- $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta \gamma\right) \approx 5 \mathrm{fb}$ at $\sqrt{ }=10.6 \mathrm{GeV}$
- Dalitz decay $\mathrm{P} \rightarrow \gamma \mathrm{e}^{+} \mathrm{e}^{-}$
- $0<Q^{2}<M^{2}$
- $\mathrm{M}^{2} \mathrm{~d} \Gamma / \mathrm{dQ}^{2} \approx(2 \alpha / \pi) \Gamma(\mathrm{P} \rightarrow \gamma \gamma)$ at $\mathrm{Q}^{2} / \mathrm{M}^{2} \approx 1 / 4$

Two-photon reaction $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-P}$: strategy

\rightarrow Electrons (positrons) are scattered predominantly at small angles

Single tag mode:

one of the 2 leptons is detected
$Q^{2}=-q_{1}^{2}=2 E E^{\prime}(1-\cos \theta)$
$q_{2}^{2} \approx 0$

- Positron (electrons) is detected
- Meson P $\left(\pi 0, \eta, \eta^{\prime}\right)$ are detected and fully reconstructed
\rightarrow Positron (electron) + meson has low p_{T}
- Missing mass in an event is close to 0
$d N / d Q^{2} \quad \square d \sigma / d Q^{2} \quad \square\left|F\left(Q^{2}\right)\right|$

This analysis in BES III: $e^{+} e^{-} \pi^{0}$

Step 0: feasibility study (no detector simulation included) performed on 10fb ${ }^{-1}$

Possibility to check precisely $\mathrm{Q}^{2} \in[0.3 ; 1.5]$ Cross check CLEO data for Q2 $\in[1.5 ; 4]$ Cross check BaBar/Belle for Q2 $\in[4 ; 10]$ Error sensitively reduced at very low Q ${ }^{2}$

Double octet model, used for BESIII simulations, in the next slides

This analysis in BES III: $\mathbf{e}^{+} e^{-} \eta$

Step 0: feasibility study (no detector simulation included) performed on 10fb ${ }^{-1}$

Possibility to check precisely $\mathrm{Q}^{2} \in[0.3 ; 1.5]$ Cross check CLEO data for Q2 $\in[1.5 ; 4]$ Cross check BaBar/Belle for $\mathrm{Q} 2 \in[4 ; 10]$ Error sensitively reduced at very low Q ${ }^{2}$

Double octet model, used for BESIII simulations, in the next slides

This analysis in BES III: $\mathbf{e}^{+} \mathbf{e}^{-} \eta^{\prime}$

Step 0: feasibility study (no detector simulation included) performed on 10fb ${ }^{-1}$

Possibility to check precisely $\mathrm{Q}^{2} \in[0.3 ; 1.5]$ Cross check CLEO data for Q2 $\in[1.5 ; 4]$ Cross check BaBar/Belle for $\mathrm{Q} 2 \in[4 ; 10]$ Error sensitively reduced at very low Q^{2}

Double octet model, used for BESIII simulations, in the next slides

Cross section from MC simulations

E c.m. $=3.77 \mathrm{GeV}$; it reduces the background due to $\mathrm{e}^{+} \mathrm{e}^{-}$from J / ψ

EKHARA simulation	$\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{e}+\mathrm{e}-\gamma \gamma \rightarrow \mathrm{e}+\mathrm{e}-\pi^{0}$ (nb)	$\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{e}+\mathrm{e}-\gamma \gamma \rightarrow \mathrm{e}+\mathrm{e}-\eta$ (nb)	$\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{e}+\mathrm{e}-\gamma \gamma \rightarrow \mathrm{e}+\mathrm{e}-\eta^{\prime}$ (nb)
Non tagged	$(832.2 \pm 2.9) \times 10^{-3}$	$(297.2 \pm 1.0) \times 10^{-3}$	$(212.2 \pm 1.1) \times 10^{-3}$
Tagged $\mathrm{e}+$ $21.6<\theta<158.4$	$(6.672 \pm 0.059) \times 10^{-3}$	$(5.240 \pm 0.019) \times 10^{-3}$	$(6.776 \pm 0.039) \times 10^{-3}$

- @BESIII we can perform the analysis $\gamma \gamma^{*} \rightarrow P$ tagging one lepton

Step 1: reconstruction efficiency

e+ is tagged, P is reconstructed
s signal MC simulation: EKHARA

1M generated events (signal MC)

Step 2: identification of background sources

- Virtual Compton Scattering process (VCS) $\quad \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \gamma$
- main source of bkg
- huge cross section
- VCS photon + soft photon from beam pipe = invariant mass close π^{0} / η No MC generator is available for such background: we will use data
$-\mathrm{e}^{+} \mathrm{e}^{-}$annihilation into hadrons
- tagged lepton has a definite pz sign (positive for e+, negative for e-)
- Improperly reconstructed QED events
- Bhabha events
- Conversion of photons into e+e- pair in Dch volume
- Combinatorial (q \bar{q})
- Peaking background: $\mathrm{e}^{+} \mathrm{e}^{-} \pi^{0} \pi^{0}, \mathrm{e}^{+} \mathrm{e}^{-} \pi^{0} \eta$

Step 3: study of selection variables (I)

Positron is tagged and reconstructed Electron is identified by mean of this cut Important to reject VCS background

A study in bins of Q^{2} was performed to optimize this cut, bin by bin, and maximize the reconstruction efficiency

This study is repeated for each selection variable SEE BACKUP SLIDES

Step 3: study of selection variables (II)

$$
r=\frac{\sqrt{s}-E_{e \pi}^{*}-p_{e \pi}^{*}}{\sqrt{s}}
$$

$$
\begin{aligned}
\sqrt{s}= & \text { c.m. energy } \\
E_{e P}^{*}= & \text { c.m. energy in }[\mathrm{eP}] \text { system } \\
P_{e P}^{*}= & \text { magnitude of momentum in }[\mathrm{eP}] \text { system } \\
& -0.025<r \gamma<0.08
\end{aligned}
$$

The study of this variable is important to restrict the energy of ISR photons

Step 3: study of selection variables (III)

Another important angular cut is $|\operatorname{Cos}(\mathrm{H})|<0.8$, where H is the helicity angle. This cut removes mainly combinatorial background

Difference of the polar angle of the 2 photons in the lab system

This cut is useful to reject VCS bkg where photons convert to e+e- within Dch volume

Signal MC simulations

Transfer momentum Q^{2}

(MC simulation) Only e+ tagged

on $2.9 \mathrm{fb}^{-1}$

$$
\begin{aligned}
& \operatorname{BR}\left(\pi^{0} \rightarrow \gamma \gamma\right)=(98.823 \pm 0.034) \% \\
& \operatorname{BR}(\eta \rightarrow \gamma \gamma)=(39.31 \pm 0.20) \% \\
& \operatorname{BR}\left(\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)=(28.06 \pm 0.34) \%
\end{aligned}
$$

Preliminary results on data

Step 3: Cross section and $\left|F\left(Q^{2}\right)\right|^{2}$ calculation

Need to evaluate on MC simulation (generator level) the cross section as function of Q^{2} when $\left|F_{p}\left(Q^{2}\right)\right|^{2}=1$

$$
\mathrm{d} \sigma / \mathrm{dQ}^{2}=\mathrm{dN} / \mathrm{dQ}^{2} I\left(L^{*} \varepsilon\right)
$$

$L=$ equivalent luminosity
$\varepsilon\left(Q^{2}\right)=$ global efficiency

Azimuthal angular correlation (MC study)

$$
\begin{aligned}
& \boldsymbol{e}^{ \pm}+\boldsymbol{e}^{-} \rightarrow \boldsymbol{e}^{ \pm}+\boldsymbol{e}^{-}+\boldsymbol{X} \\
& p_{1}\left(E, \vec{p}_{1}\right), \quad p_{2}\left(E,-\vec{p}_{1}\right) \quad \text { incoming } \\
& E=\sqrt{s} / 2 \quad s=\left(p_{1}+p_{2}\right)^{2} \\
& q_{1}=p_{1}-p_{1}^{\prime}, \quad q_{2}=p_{2}-p_{2}^{\prime} \quad \text { outcoming }
\end{aligned}
$$

$$
\begin{aligned}
d \sigma & =F\left\{v_{T T} \sigma_{T T}+v_{T T}^{\prime} \cos (2 \tilde{\phi})\left(\sigma_{\|}-\sigma_{\perp}\right)\right. \\
& +h_{1} h_{2} v_{T T}^{\prime \prime} \frac{1}{2}\left(\sigma_{0}-\sigma_{2}\right)+v_{L L} \sigma_{L L}+v_{T L} \sigma_{T L} \\
+ & \left.v_{L T} \sigma_{L T}+v_{T L}^{\prime} \cos (\tilde{\phi}) \tau_{T L}+h_{1} h_{2} v_{T L}^{\prime \prime} \cos (\tilde{\phi}) \tau_{T L}^{a}\right\}
\end{aligned}
$$

For pseudoscalar mesons, only $\sigma_{\perp}=\sigma_{0}=2 \sigma_{T T}$ are non-zero
Two-photon states: $C=+1$; for 2 real photons $\gamma \gamma \rightarrow X$

$$
\begin{aligned}
& \mathrm{J}=1 \text { is forbidden (Landau-Young theorem) } \\
& \mathrm{J}=0: 0^{+} \text {(pseudo) and } 0^{++} \text {(scalar) } \\
& \mathrm{J}=2: 2^{++} \text {(tensor) }
\end{aligned}
$$

Azimuthal angular correlation access to tensor: first ever extraction in e+e-colliders!

Azimuthal angular correlation (MC study)

$e^{+} e^{-} \pi^{0}$

$(\cos \phi)_{\text {c.m.ee }} \equiv-\frac{p_{1 \perp}^{\prime} \cdot p_{2 \perp}^{\prime}}{\left[\left(p_{1 \perp}^{\prime}\right)^{2}\left(p_{2 \perp}^{\prime}\right)^{2}\right]^{1 / 2}} \quad \begin{aligned} & \text { lepton } \\ & \text { frame }\end{aligned}$

$$
\cos \tilde{\phi} \equiv-\frac{\tilde{p}_{1 \perp} \cdot \tilde{p}_{2 \perp}}{\left[\left(\tilde{p}_{1 \perp}\right)^{2}\left(\tilde{p}_{2 \perp}\right)^{2}\right]^{1 / 2}}
$$

First time that this measurement will be performed in $\mathrm{e}^{+} \mathrm{e}^{-}$colliders: $B E S I I I$

Conclusions \& future plans

The study of transition form factors is of utmost importance to understand the internal structure of the mesons

- This preliminary study shows that at BES III this analysis is feasible ($\mathrm{Ecm}=3.77 \mathrm{GeV}$)
$>$ Range observable in BES: Q^{2} [0.3;10.0] GeV^{2} -improved efficiency compared to other experiments - never tested the area Q^{2} in $[0.5 ; 1.5] \mathrm{GeV}^{2}$ from other experiments - possibility to cross check CLEO data at low Q^{2} [1.5;4] GeV^{2}
- complementary measurement to BaBar/Belle experiment in [4;10]GeV ${ }^{2}$
- Important study of $\mathrm{F}_{\mathrm{p}}\left(\mathrm{Q}^{2}\right)$ at low momentum transfer to fix theory
- several channels are under study right now in our group in MAINZ
A. Denig
R. Bormuth, M. Dipfenbach, A. Hahn, B. Kloss, E. Prencipe, C. Redmer

Thank you!

Backup slides

Big open questions

- Meson distribution amplitudes $\gamma \gamma^{*} \rightarrow$ meson transition Form Factor at large transfer momenta Q^{2} are a paradigm for hard processes: the puzzle with the new BaBar data in the analysis $\gamma \gamma^{*} \rightarrow \pi^{0}$ remains to be understood.
- Meson distribution amplitudes $\gamma \gamma^{*} \rightarrow$ meson transition Form Factor at low-medium transfer momenta Q^{2} are important to study hadronic light-by-light contribution to the measurement of $(g-2)_{\mu}$: due to the forthcoming experiment at Fermilab it will become the largest uncertainty to evaluate The dedicate experiment at Fermilab wants to reduce this uncertainty by a factor 4 . It requires improvement from theory side.
- Meson transition form factors represent a textbook observable to study transition region from perturbative to non-perturbative QCD

Cos(e-):study in bins of Q^{2}

$\mathrm{R} \gamma$: study in bins of Q^{2}

Full signal MC sample: R γ in every Q^{2} bin

$\Delta \gamma \gamma:$ Study in bins of Q^{2}

$3.0<\mathrm{Q}^{2}<5.0 \mathrm{GeV}^{2}$
$5.0<\mathrm{Q}^{2}<7.0 \mathrm{GeV}^{2} \quad 7.0<\mathrm{Q}^{2}<10.0 \mathrm{GeV}^{2}$

CosHelicity: study in bins of Q^{2}

Resolution

Simulation of $2.9 \mathrm{fb}^{-1}$ were performed $\pi^{0}: 19434$ generated events (2.9 fb ${ }^{-1}$)

- Many events are not reconstruct efficiently because of:
- photon acceptance
- detector conditions included

Before dedicated selection cuts are applied: 154904 events (500k events)

Thank you!

