Working Group on radiative corrections and generators for low energy hadron cross sections and luminosity

27 – 28 September 2012, Mainz

Study of processes via $\gamma\gamma$ interactions at BESIII

Outline

- Introduction
- Motivation
- The BESIII experiment
- Two-photon reactions
- Feasibility studies
- Experimental results (WORK IN PROGRESS)
- Conclusion and Future Plans

Introduction

- Transition form factors are important ingredients to understand the nature of mesons and their underlying quark/gluon structures
- Several reasons to be interested in this field:
 - quantify the Standard Model value of the anomalous momentum of the muon
 - high precision measurements are possible and theoretical calculations are highly needed

Hadronic Light-by-Light Scattering

$$a_{\mu}$$
(had), $LbL = (10.5 \pm 2.6) \cdot 10^{-10}$ [1] $(11.6 \pm 4.0) \cdot 10^{-10}$ [2] $(21.6 \pm 9.1) \cdot 10^{-10}$ [3]

[1] J Prades et all, Phys. Rev. Lett. 75, 1447 (1995)

[2] A. Nyffler et all., Phys. Rev. D 65, 073034 (2002)

[3] C.S. Fisher et all, arXiV:1012.3886, 2011

Motivation

- Experimental results are not in agreement for high Q² (BaBar, Belle)
- For medium-low Q² higher precision is needed
- ▶ BESIII can give an important contribution for Q²<10 GeV²

The BES III experiment

B = 1T resolution(MDC): $\sigma_p/P = 0.58\%$ resolution(MDC): $\sigma_E/E = 6.0\%$ resolution(TOF): $\sigma_\tau = 100 \, \text{ps}$ resolution(EMC): $\sigma/E = 2.5\%$ Muon detected: p>400 MeV/c

Very good separation e/π

BESIII collected by the end of 2011

J/ψ: 225 Million Ψ': 106 Million ψ(3770): 2.9fb⁻¹

 $\psi(4010): 0.5 \text{fb}^{-1}$

• BES III detector at BepC (Beijing, China) offers a unique opportunity to perform light hadron physics analyses and transition form factor measurements.

How the form factor can be measured

- Two-photon production of the meson
 - $-S+M^2 < q_1^2 < 0, q_2^2 \approx 0, Q^2 \equiv -q_1^2$
 - dσ/dQ² falls as 1/Q6
 - At \sqrt{s} =10.6 GeV for e⁺e⁻ \rightarrow e⁺e⁻ π^0 $d\sigma/dQ^2(10 \text{ GeV}^2) \approx 10 \text{ fb/GeV}^2$

•
$$Q^2 = S > M^2$$

- σ ∞ 1/S²
- $\sigma(e^+e^- \to \eta \gamma) \approx 5$ fb at $\sqrt{s}=10.6$ GeV

- $-0 < Q^2 < M^2$
- $M^2d\Gamma/dQ^2 \approx (2\alpha/\pi)\Gamma(P \rightarrow \gamma\gamma)$ at $Q^2/M^2 \approx 1/4$

F

Two-photon reaction $e^+e^- \rightarrow e^+e^-P$: strategy

Electrons (positrons) are scattered predominantly at small angles

Single tag mode:

one of the 2 leptons is detected

$$Q^2 = -q_1^2 = 2EE'(1-\cos\theta)$$

 $q_2^2 \approx 0$

- Positron (electrons) is detected
- Meson P (π0,η,η') are detected and fully reconstructed
- ightharpoonup Positron (electron) + meson has low $p_{_{\rm T}}$
- Missing mass in an event is close to 0

 dN/dQ^2

 $d\sigma/dQ^2$

 $|F(Q^2)|$

This analysis in BES III: $e^+e^-\pi^0$

Step 0: feasibility study (no detector simulation included) performed on 10fb⁻¹

Possibility to check precisely $Q^2 \in [0.3;1.5]$ Cross check CLEO data for $Q2 \in [1.5;4]$ Cross check BaBar/Belle for $Q2 \in [4;10]$ Error sensitively reduced at very low Q^2

Double octet model, used for BESIII simulations, in the next slides

This analysis in BES III: $e^+e^-\eta$

Step 0: feasibility study (no detector simulation included) performed on 10fb⁻¹

Error sensitively reduced at very low Q²

This analysis in BES III: $e^+e^-\eta$ '

Step 0: feasibility study (no detector simulation included) performed on 10fb⁻¹

Possibility to check precisely $Q^2 \in [0.3;1.5]$ Cross check CLEO data for $Q2 \in [1.5;4]$ Cross check BaBar/Belle for $Q2 \in [4;10]$ Error sensitively reduced at very low Q^2

Double octet model, used for BESIII simulations, in the next slides

Cross section from MC simulations

E c.m. = 3.77 GeV; it reduces the background due to e^+e^- from J/ψ

Ek	KHARA simulation	e+e- \rightarrow e+e- $\gamma\gamma$ \rightarrow e+e- π^0 (nb)	$e+e- \rightarrow e+e-\gamma\gamma \rightarrow e+e-\eta$ (nb)	$\begin{array}{c} e+e-\rightarrow e+e-\gamma\gamma\rightarrow e+e-\eta'\\ \text{ (nb)} \end{array}$
	Non tagged	(832.2± 2.9)x 10 ⁻³	(297.2 ± 1.0)x 10 ⁻³	(212.2 ± 1.1)x 10 ⁻³
	Tagged e+ 21.6<θ<158.4	(6.672 ± 0.059)x 10 ⁻³	(5.240± 0.019)x 10 ⁻³	(6.776 ± 0.039)x 10 ⁻³

▶ @BESIII we can perform the analysis $\gamma \gamma^* \rightarrow P$ tagging one lepton

Step 1: reconstruction efficiency

- > e+ is tagged, P is reconstructed
- signal MC simulation: EKHARA
- ▶ 1M generated events (signal MC)

Step 2: identification of background sources

 $e^+e^-\pi^0$

- Virtual Compton Scattering process (VCS) e⁺e⁻→e⁺e⁻γ
 - main source of bkg
 - huge cross section
 - VCS photon + soft photon from beam pipe = invariant mass close π^0/η No MC generator is available for such background: we will use data
- ightharpoonup e⁺e⁻ annihilation into hadrons
 - tagged lepton has a definite *pz* sign (positive for e+, negative for e-)
- Improperly reconstructed QED events
- Bhabha events
- Conversion of photons into e+e- pair in Dch volume
- ightharpoonup Combinatorial ($q\overline{q}$)
- Peaking background: $e^+e^-\pi^0\pi^0$, $e^+e^-\pi^0\eta$

Step 3: study of selection variables (I)

 $e^+e^-\pi^0$

Positron is tagged and reconstructed

Electron is identified by mean of this cut

Important to reject VCS background

A study in bins of Q² was performed to optimize this cut, bin by bin, and maximize the reconstruction efficiency

This study is repeated for each selection variable SEE BACKUP SLIDES

Step 3: study of selection variables (II)

$$r = \frac{\sqrt{s} - E_{e\pi}^* - p_{e\pi}^*}{\sqrt{s}}.$$

$$\sqrt{s}$$
 = c.m. energy

 $E_{eP}^* = c.m.$ energy in [eP] system

 P_{eP}^* = magnitude of momentum in [eP] system

-0.025<rγ<0.08

The study of this variable is important to restrict the energy of **ISR photons**

Step 3: study of selection variables (III)

work
in
progress

 $e^+e^-\pi^0$

Difference of the polar angle of the 2 photons in the lab system

This cut is useful to reject VCS bkg where photons convert to e+e- within Dch volume

Another important angular cut is |Cos(H)|<0.8, where H is the helicity angle. This cut removes mainly combinatorial background

Mainz, 27.09.2012

Step 3: study of selection variables (iV)

work
in
progress

 $e^+e^-\pi^0$

Transfer momentum Q²

(MC simulation) Only e+ tagged

BR(
$$\pi^0 \rightarrow \gamma \gamma$$
) = (98.823±0.034)%
BR($\eta \rightarrow \gamma \gamma$) =(39.31±0.20)%
BR($\eta \rightarrow \pi^+ \pi^- \pi^0$) =(28.06±0.34)%

Preliminary results on data

 $e^+e^-\pi^0$

Step 3: Cross section and $|F(Q^2)|^2$ calculation

work in progress

Need to evaluate on MC simulation (generator level) the cross section as function of Q^2 when $|F_p(Q^2)|^2 = 1$

$$d\sigma/dQ^2 = dN/dQ^2 / (L*\varepsilon)$$

L = equivalent luminosity $\varepsilon(Q^2)$ = global efficiency

$$\begin{array}{c|c}
\hline
d\sigma \\
\hline
dQ^2
\end{array}$$

$$\begin{array}{c|c}
data \\
\hline
d\sigma \\
\hline
dQ^2
\end{array}$$

$$\begin{array}{c|c}
MC, F_{-}=1
\end{array}$$

Mainz, 27.09.2012²⁰

Azimuthal angular correlation (MC study)

$$e^{\pm} + e^{-} \rightarrow e^{\pm} + e^{-} + X$$
 $p_{1}(E, \vec{p}_{1}), \quad p_{2}(E, -\vec{p}_{1}) \quad \text{incoming}$
 $E = \sqrt{s}/2 \quad s = (p_{1} + p_{2})^{2}$
 $q_{1} = p_{1} - p'_{1}, \quad q_{2} = p_{2} - p'_{2} \quad \text{outcoming}$

$$d\sigma = F \left\{ v_{TT} \sigma_{TT} + v'_{TT} \cos(2\tilde{\phi}) \left(\sigma_{\parallel} - \sigma_{\perp} \right) + h_1 h_2 v''_{TT} \frac{1}{2} \left(\sigma_0 - \sigma_2 \right) + v_{LL} \sigma_{LL} + v_{TL} \sigma_{TL} + v_{LT} \sigma_{LT} + v'_{TL} \cos(\tilde{\phi}) \tau_{TL} + h_1 h_2 v''_{TL} \cos(\tilde{\phi}) \tau_{TL}^a \right\}$$

For pseudoscalar mesons, only $\sigma_{\perp}=\sigma_{0}=2\sigma_{TT}$ are non-zero

Two-photon states: C = +1; for 2 real photons $\gamma\gamma \rightarrow X$

J = 1 is forbidden (Landau-Young theorem)

J = 0: 0⁺⁺ (pseudo) and 0⁺⁺ (scalar)

 $J = 2: 2^{++} \text{ (tensor)}$

Azimuthal angular correlation access to tensor: first ever extraction in e+e- colliders!

Azimuthal angular correlation (MC study)

 $e^{+}e^{-}\pi^{0}$

$$(\cos\phi)_{\text{c.m.}ee} \equiv -\frac{p'_{1\perp} \cdot p'_{2\perp}}{[(p'_{1\perp})^2 (p'_{2\perp})^2]^{1/2}}$$
 lepton frame

$$\cos\tilde{\phi} \equiv -\frac{\tilde{p}_{1\perp} \cdot \tilde{p}_{2\perp}}{[(\tilde{p}_{1\perp})^2 (\tilde{p}_{2\perp})^2]^{1/2}}$$

γγ frame

First time that this measurement will be performed in e⁺e⁻ colliders: BESIII

Conclusions & future plans

- The study of transition form factors is of utmost importance to understand the internal structure of the mesons
- This preliminary study shows that at BES III this analysis is feasible (Ecm = 3.77 GeV)
- Range observable in BES: Q² [0.3;10.0] GeV²
 - improved efficiency compared to other experiments
 - never tested the area Q^2 in [0.5;1.5] GeV^2 from other experiments
 - possibility to cross check CLEO data at low Q² [1.5;4]GeV²
 - complementary measurement to BaBar/Belle experiment in [4;10]GeV²
- Important study of $F_{p}(Q^{2})$ at low momentum transfer to fix theory
 - several channels are under study right now in our group in MAINZ
 - A. Denig
 - R. Bormuth, M. Dipfenbach, A. Hahn, B. Kloss, E. Prencipe, C. Redmer

Thank you!

Backup slides

Big open questions

- Meson distribution amplitudes $\gamma \gamma^* \to meson transition Form Factor$ at large transfer momenta Q^2 are a paradigm for hard processes: the puzzle with the new BaBar data in the analysis $\gamma \gamma^* \to \pi^0$ remains to be understood.
- Meson distribution amplitudes $\gamma \gamma^* \to meson \ transition \ Form \ Factor$ at low-medium transfer momenta Q^2 are important to study hadronic light-by-light contribution to the measurement of $(g-2)_{\mu}$: due to the forthcoming experiment at Fermilab it will become the largest uncertainty to evaluate

 The dedicate experiment at Fermilab wants to reduce this uncertainty by a factor 4. It requires improvement from theory side.
- Meson transition form factors represent a textbook observable to study transition region from perturbative to non-perturbative QCD

Cos(e-):study in bins of Q²

$R\gamma$: study in bins of Q^2

5.0<Q'</.0 GeV'

$\Delta \gamma \gamma$: Study in bins of Q^2

CosHelicity: study in bins of Q²

Resolution

► Simulation of 2.9 fb⁻¹ were performed

 π^{0} : 19 434 generated events (2.9 fb⁻¹)

- Many events are not reconstruct efficiently because of:
 - photon acceptance
 - detector conditions included

Before dedicated selection cuts are applied: 154904 events (500k events)

Thank you!

