The Polarization Function, the QED Beta Function and the Muon Anomalous Magnetic Moment

Johann H. Kühn

Mainz 27-28 September 2012

- I. Four loop polarization function
- II. QED beta function at five loops
- III. Anomalous magnetic moment of the muon: selected five- and six-loop terms

based on

Baikov, Chetyrkin, JHK, J. Rittinger, arxiv: 1206.1284, JHEP 1207(2012)017 Baikov, Chetyrkin, JHK, C. Sturm, arxiv: 1207.2199

I. The Polarization Function

$$(-g_{\alpha\beta}q^2 + q_{\alpha}q_{\beta}) \Pi(L, a_s) = i \int d^4x e^{iq \cdot x} \langle 0| \mathsf{T} j_{\alpha}(x) j_{\beta}(0) | 0 \rangle$$

available in 4 loops (including constant piece)

Examples of two non-singlet and two singlet diagrams contributing to the vector correlator.

using

$$D(L, a_s) = 12\pi^2 \left(\gamma(a_s) - \left(\beta(a_s) \frac{\partial}{\partial a_s} \right) \Pi(L, a_s) \right)$$

with Π in $\mathcal{O}(\alpha_s^3)$ and anomalous dimension γ in 5 loops $(\mathcal{O}(\alpha_s^4))$ $\Rightarrow R \equiv \sigma(\text{had}/\sigma(\mu^+\mu^-) \text{ in } \mathcal{O}(\alpha_s^4))$ **Results:**

$$\begin{split} \Pi^{\scriptscriptstyle NS} &= \frac{d_R}{16\pi^2} \left(\sum_{i\geq 0} p_i^{\scriptscriptstyle NS} a_s^i \right), \quad \Pi^{\scriptscriptstyle SI} = \frac{d_R}{16\pi^2} \left(\sum_{i\geq 3} p_i^{\scriptscriptstyle SI} a_s^i \right), \\ p_0^{\scriptscriptstyle NS} &= \frac{20}{9}, \\ p_1^{\scriptscriptstyle NS} &= C_F \left[\frac{55}{12} - 4\zeta_3 \right], \\ p_2^{\scriptscriptstyle NS} &= C_F^2 \left[-\frac{143}{72} - \frac{37}{6}\zeta_3 + 10\zeta_5 \right] + C_F C_A \left[\frac{44215}{2592} - \frac{227}{18}\zeta_3 - \frac{5}{3}\zeta_5 \right] \\ &\quad + C_F T_F n_f \left[-\frac{3701}{648} + \frac{38}{9}\zeta_3 \right], \\ p_3^{\scriptscriptstyle NS} &= C_F^3 \left[-\frac{31}{192} + \frac{13}{8}\zeta_3 + \frac{245}{8}\zeta_5 - 35\zeta_7 \right] + T^2 n_f^2 C_F \left[\frac{196513}{23328} - \frac{809}{162}\zeta_3 - \frac{20}{9}\zeta_5 \right] \\ &\quad + T n_f C_F^2 \left[-\frac{7505}{10368} + \frac{1553}{54}\zeta_3 - 4\zeta_3^2 + \frac{11}{24}\zeta_4 - \frac{250}{9}\zeta_5 \right] \\ &\quad + T n_f C_F C_A \left[-\frac{5559937}{93312} + \frac{41575}{1296}\zeta_3 + \frac{2}{3}\zeta_3^2 - \frac{11}{24}\zeta_4 + \frac{515}{27}\zeta_5 \right] \\ &\quad + C_F C_A \left[-\frac{382033}{20736} - \frac{46219}{864}\zeta_3 - \frac{11}{48}\zeta_4 + \frac{9305}{144}\zeta_5 + \frac{35}{2}\zeta_7 \right] \\ &\quad + C_F C_A^2 \left[\frac{34499767}{373248} - \frac{147473}{2592}\zeta_3 + \frac{55}{6}\zeta_3^2 + \frac{11}{48}\zeta_4 - \frac{28295}{864}\zeta_5 - \frac{35}{12}\zeta_7 \right], \\ p_3^{\scriptscriptstyle SI} &= \frac{d^{abc}}{d_R} \left\{ \frac{431}{1728} - \frac{21}{64}\zeta_3 - \frac{1}{6}\zeta_3^2 - \frac{1}{16}\zeta_4 + \frac{5}{16}\zeta_5 \right\}. \end{split}$$

Can be applied for QCD (corresponding to quark loops) or to pure QED (lepton loops) with properly chosen colour factors.

II. QED Beta Function

The QED beta function receives contributions from non-singlet (starting from 1-loop) and from singlet (starting from 4-loop) terms.

RG-equation: perturbative QCD contribution to

$$\mu^2 \frac{d}{d\mu^2} A = \beta^{EM}(A, a_s) = 16\pi^2 A^2 \gamma^{EM}(a_s)$$

with $\gamma^{EM} = (\sum q_i^2)\gamma^{NS} + (\sum q_i^2)\gamma^{SI}$ and $A = \alpha/4\pi$; $a_s = \alpha_s/4\pi$

 γ = anomalous dimension, evaluated in 5 loops (with the help of massless 4-loop propagator integrals)

 \Rightarrow result in \overline{MS} scheme

conversion: MOM-scheme $\Pi^{MOM}(Q^2, \mu^2)$ vanishes at $Q^2 = \mu^2$ (with $\mu^2 \neq 0$!)

$$\Rightarrow \tilde{A}(\mu) = \frac{A(\mu)}{1 + (4\pi)^2 A(\mu) \Pi(L = 0, a_s(\mu))}.$$
 with $L \equiv \ln \frac{\mu^2}{Q^2}$ and

$$\beta_{MOM}^{EM}(\tilde{A}, a_s) = 16\pi^2 \tilde{A}^2 \left[\gamma^{EM}(a_s) - \beta^{QCD}(a_s) \frac{\partial}{\partial a_s} \Pi^{EM}(L=0, a_s) \right]$$

No new calculation needed.

■ application: pure QED, MS scheme

$$\begin{split} \beta^{QED}(A) &= n_f \left[\frac{4}{3} \frac{A^2}{3} \right] + 4 n_f A^3 - A^4 \left[2 n_f + \frac{44}{9} n_f^2 \right] \\ &+ A^5 \left[-46 n_f + \frac{760}{27} n_f^2 - \frac{832}{9} \zeta_3 n_f^2 - \frac{1232}{243} n_f^3 \right] \\ &+ A^6 \left(n_f \left[\frac{4157}{6} + 128\zeta_3 \right] + n_f^2 \left[-\frac{7462}{9} - 992\zeta_3 + 2720\zeta_5 \right] \\ &+ n_f^3 \left[-\frac{21758}{81} + \frac{16000}{27} \zeta_3 - \frac{416}{3} \zeta_4 - \frac{1280}{3} \zeta_5 \right] + n_f^4 \left[\frac{856}{243} + \frac{128}{27} \zeta_3 \right] \right). \end{split}$$

conversion to MOM-scheme: as before

conversion: on-shell scheme $\Pi^{OS}(Q^2, M^2)$ vanishes at $Q^2 = 0$ ($M^2 \neq 0$!)

 $\Rightarrow \Pi^{\overline{MS}}(Q^2 = 0, m^2, \mu^2)$ is required: 4-loop tadpoles!

conversion of coupling constant (4-loop) conversion of mass (3-loop)

 $\Rightarrow \Pi^{OS}(Q^2, M^2) \ Q^2 \text{-dependent (logarithmic) part at 5 loop.} \\ (\mu^2 \text{ disappears, } M^2 \text{ appears})$

Results: term of order α^5 , Q^2 dependent part

$$\Pi^{(5)}(\ell_{MQ}) = N\ell_{MQ} \Biggl\{ \frac{4157}{6144} + \frac{1}{8} \zeta_3 \\ + N \Biggl[\frac{55}{96} + \frac{5}{96} \pi^2 + \frac{179}{256} \zeta_3 - \frac{115}{12} \zeta_5 + \frac{35}{4} \zeta_7 + \frac{13}{128} \ell_{MQ} - \frac{1}{12} \pi^2 \ln(2) \Biggr] \\ + N \operatorname{si} \Biggl[-\frac{13}{12} - \frac{4}{3} \zeta_3 + \frac{10}{3} \zeta_5 \Biggr] \\ + N^2 \Biggl[-\frac{11}{432} + \frac{1}{36} \pi^2 - \frac{17089}{2304} \zeta_3 + \zeta_3^2 + \frac{125}{18} \zeta_5 + \frac{35}{288} \ell_{MQ} \\ - \frac{7}{8} \zeta_3 \ell_{MQ} + \frac{5}{6} \zeta_5 \ell_{MQ} + \frac{1}{72} \ell_{MQ}^2 \Biggr] \\ + N^2 \operatorname{si} \Biggl[-\frac{149}{108} + \frac{13}{6} \zeta_3 + \frac{2}{3} \zeta_3^2 - \frac{5}{3} \zeta_5 - \frac{11}{72} \ell_{MQ} + \frac{1}{3} \zeta_3 \ell_{MQ} \Biggr] \\ + N^3 \Biggl[-\frac{6131}{2916} + \frac{203}{162} \zeta_3 + \frac{5}{9} \zeta_5 - \frac{151}{324} \ell_{MQ} + \frac{19}{54} \zeta_3 \ell_{MQ} - \frac{11}{216} \ell_{MQ}^2 \\ + \frac{1}{27} \zeta_3 \ell_{MQ}^2 - \frac{1}{432} \ell_{MQ}^3 \Biggr] \Biggr\}.$$

N = number of leptons; $\ell_{MQ} = \ln M^2/Q^2$ $\Rightarrow \beta$ -function in OS scheme at 5 loops (1)

III. Anomalous magnetic moment of the muon

Recall (numbers from Kinoshita et al. 1205.5370)

$$a_{\mu}(exp) = 116592089(63) \times 10^{-11}$$

 $\delta_{exp} = 63 \times 10^{-11}$

Theory: dominant errors (hadronic)

$$\delta_{vacpol} = (37.2)_{exp} + (21.0)_{rad} \times 10^{-11}$$

$$\delta_{ll} = 40 \times 10^{-11}$$

QED: 2 loop, 3 loop: exact, analytic 4 loop, 5 loop (recently): numerical (Kinoshita).

3 loop:
$$a_{\mu}^{(6)} = (1.181...+22.868...) \left(\frac{\alpha}{\pi}\right)^3 \approx 3 \cdot 10^{-7}$$

const $[\log(m_{\mu}/m_e)]^n$
4 loop: $a_{\mu}^{(8)} = (-1.9106(20) + 132.6852(60)) \left(\frac{\alpha}{\pi}\right)^4 \approx 382 \cdot 10^{-11}$
const $[\log(m_{\mu}/m_e)]^n$
(theory error: $1.7 \cdot 10^{-13}$)
5 loop: $a_{\mu}^{(10)} = (9.168(571) + 742.18(87) + ...) \left(\frac{\alpha}{\pi}\right)^5 \approx 5 \cdot 10^{-11}$
const $[\log(m_{\mu}/m_e)]^n$

factor 10 below experimental uncertainty. Nevertheless: should be checked:

master formulae

$$a_{\mu}^{\text{asymp}} = \frac{\alpha}{\pi} \int_0^1 dx (1-x) \left[d_R^{\text{asymp}} \left(\frac{x^2}{1-x} \frac{M_{\mu}^2}{M_e^2}, \alpha \right) - 1 \right],$$
$$d_R^{\text{asymp}} (Q^2/M^2, \alpha) = \frac{1}{1 + \Pi^{\text{asymp}} (Q^2/M^2, \alpha)}.$$

with Π evaluated in the OS scheme

The ten gauge invariant subsets contributing to the muon anomaly which originate from inserting the vacuum polarization up to four-loop order into the first order QED vertex. For each diagram class only one typical representative is shown. Wavy lines denote photons(γ), solid lines denote electrons(e) or muons (μ). The last five diagrams {I(f), I(g), I(h), I(i), I(j)} are non-factorizable insertions of the vacuum polarization function; the first five diagrams {I(a), I(b), I(c), I(d), I(e)} are factorizable ones.

Result for coefficients:

Subset	analytical	numerical	Ref.	numana.
I(a)	$20.1832 + O(M_e/M_\mu)$	20.14293(23)	(Kinoshita)	pprox -0.04
I(b)	27.7188 + $\mathcal{O}(M_e/M_{\mu})$	27.69038(30)	(Kinoshita)	pprox -0.03
I(c)	4.81759 + $\mathcal{O}(M_e/M_{\mu})$	4.74212(14)	(Kinoshita)	pprox -0.08
I(d)	7.44918 + $\mathcal{O}(M_e/M_{\mu})$	7.45173(101)	(Kinoshita)	pprox 0.003
I(e)	$-1.33141 + \mathcal{O}(M_e/M_{\mu})$	-1.20841(70)	(Kinoshita)	pprox 0.12
I(f)	$2.89019 + O(M_e/M_{\mu})$	2.88598(9)	(Kinoshita)	pprox -0.004
I(g) + I(h)	$1.50112 + O(M_e/M_{\mu})$	1.56070(64)	(Kinoshita)	pprox 0.06
I(i)	$0.25237 + O(M_e/M_{\mu})$	0.0871(59)	(Kinoshita)	pprox -0.17
I(j)	$-1.21429 + O(M_e/M_{\mu})$	-1.24726(12)	(Kinoshita)	pprox -0.03

The first column shows the different gauge invariant subsets of diagrams. The second column contains the corresponding results evaluated numerically, where we have used for the mass ratio $M_{\mu}/M_e = 206.7682843(52)$. This result is correct only up to power corrections in the small mass ratio M_e/M_{μ} . The third column contains the numerical result obtained by Kinoshita et al. . The last column shows the difference between the numerical and asymptotic analytical results. The subsets $\{I(a), I(b), I(c), I(d), I(e)\}$ originate from Feynman diagrams with factorizable vacuum polarization insertions, whereas the subsets $\{I(f), I(g), I(h), I(i), I(j)\}$ are non-factorizable.

good overall agreement! sum: vacpol= $\sum I = 62.26675$ to be compared with 751.35 for the total

lessons from 5-loop

logarithmically enhanced terms and factorizable terms dominate:

 $\sum I = 62.26675 = \underbrace{58.8374}_{\text{factorizable}} + \underbrace{1.915}_{\text{irreducible}} + \underbrace{1.514}_{\text{irreducible}}$ $\stackrel{\text{irreducible}}{4 \text{ loop vacpol}} + \underbrace{10.915}_{\text{irreducible}} + \underbrace{1.514}_{\text{irreducible}}$ prediction for 6 loops (vacpol-subset) $\sum I = \underbrace{246.381}_{\text{factorizable}} + \underbrace{10.8647}_{\text{irreducible}} + \underbrace{5 \text{ loop vacpol}}_{\text{logs}} + \underbrace{5 \text{ loop vacpol}}_{\text{const}} \approx 257$

still missing (and dominant): light by light!