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γγ physics

transition  form-factors of γγ→M 
for π0, η, η’
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Figure M1.3: The magnitudes of the �⇤� ! ⌘ (left) and �⇤� ! ⌘0 (right) transition form factors mea-
sured at spacelike virtualities by CLEO [7] (triangles) and BABAR [17] (circles), and at timelike virtuality
by BABAR [16] (black squares).

access these observables at high-luminosity colliders.
Even in absence of a direct measurement of the above polarized cross sections, there exist
non-trivial constraints on the polarized cross sections through sum rules. The existence of a
sum rule involving �� has been foreseen by Brodsky and Schmidt [22] based upon applying
the Gerasimov-Drell-Hearn (GDH) sum rule to the �� process, which yields :

0 =

1
Z

0

ds
��(s)

s
, (M1.11)

Two other sum rules, established in [23], express integrals over the linearly-polarized cross-
section of photon fusion in terms of the low-energy constants of the Euler-Heisenberg La-
grangian [18]. The latter describes the low-energy photon-photon interaction, respecting gauge
invariance and discrete symmetries constraints, as :

LEH = c1(Fµ⌫F
µ⌫)2 + c2(Fµ⌫F̃

µ⌫)2, (M1.12)

where Fµ⌫ = @µA⌫ � @⌫Aµ, F̃µ⌫ = "µ⌫↵�@↵A�. The sum rules expressing c1, and c2 in terms of
polarized cross sections :

c1 ± c2 =
1
8⇡

1
Z

0

ds
�||(s)± �?(s)

s2
. (M1.13)

The sum rules of Eqs. (M1.11) and (M1.13) have been shown to hold in perturbative cal-
culations (e.g. in QED or QCD in the perturbative regime). However as their derivation is
general, their realization in QCD, in its non-perturbative regime, allows to gain insight in the
�� ! hadrons cross-sections, as shown recently in [23].
As the high energy behavior of �� is expected from Regge theory to drop as 1/s2 or faster, the
sum rule of Eq. (M1.11) for real photons is largely dominated by the resonance region, with the
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Figure M1.3: The magnitudes of the �⇤� ! ⌘ (left) and �⇤� ! ⌘0 (right) transition form factors mea-
sured at spacelike virtualities by CLEO [7] (triangles) and BABAR [17] (circles), and at timelike virtuality
by BABAR [16] (black squares).
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Figure M1.2: The �⇤� ! ⇡0 transition form factor multiplied by the photon virtuality Q2. The data are
from CELLO [6], CLEO [7], and BABAR [8]. The dashed line indicates the asymptotic perturbative QCD
prediction. The different curves and band show the perturbative QCD predictions for different models
for the pion distribution amplitudes : asymptotic DA (ASY) [5], Chernyak-Zhitnitsky DA (CZ) [9] Bakulev,
Mikhailov and Stefanis (BMS) [10].

and CLEO indicated an early onset of the perturbative QCD prediction, which was interpreted in
terms of a meson distribution amplitude being close to its asymptotic shape �M (x) = 6x(1�x),
yielding F⇡0�⇤�(Q2)! 2f⇡/Q2.
The recent BABAR data [8] however shows that the asymptotic pQCD prediction is not yet
reached for the ⇡0 FF. There has been a flurry of recent theoretical activity trying to explain the
new data either as indicating a pion distribution amplitude which has a finite value at one of
the endpoints - when either the quark or anti-quark carries zero momentum fraction, see e.g.
[11, 12], or as pointing to the role of the transverse momentum components of the quark in the
pion wavefunction, see e.g. [13]. Clearly further studies, both theoretical and experimental, are
required to arrive at an understanding of the ⇡0�⇤� transition FF which are among the most
basic processes in perturbative QCD involving light quarks [14, 15].
Another puzzle is shown by the analogous measurements for the �⇤� ! ⌘ (left) and �⇤� ! ⌘0

transition FFs, as shown in Fig. M1.3. Since the asymptotic values of the timelike and spacelike
transition FFs are expected to be very close, the results for spacelike and timelike data are
shown on the same scale. In contrast to the ⇡0 case, these form factors do seem to level off
faster, especially in case of the ⌘0. For the ⌘ and ⌘0 transition FFs, different mixing scenario’s,
and different gluon contents do affect these observables.
The transition of a �⇤� state to a meson is a hadronic contribution to the light-by-light scatter-
ing. Light-by-light scattering is a well-known phenomenon of purely quantum origin [18, 19],
which has indirectly been observed at nearly all high-energy colliders, see e.g. [20, 21] for
reviews. For both photons (quasi)-real, the inclusive unpolarized cross-section for the photon
fusion (�� ! all) is fairly well measured for energies between 1 and 200 GeV [4], but not much
is known about the polarized cross-sections, ��(s) ⌘ �2(s)� �0(s), and �||(s)� �?(s), where
the subscripts indicate the photon polarizations (0 or 2 show the total helicity of the circularly
polarized photons, while || or ? show if the linear photon polarizations are parallel or perpen-
dicular to each other); s is the square of the �� c.m. energy. It has not been realized so far to
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space-like region
1.5 GeV2 < Q22 < 40 GeV2

future:

Q12 = 0 - one quasi-real photon

transition  form-factors of γγ→M 
for a2(1320), f2(1270), f2′ (1525)
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low Q22
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γγ physics

perturbative QCD and quark structure of 
hadrons (meson distribution amplitudes)
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 hadronic physics: lead to constraints on γγ* transition FFs of qq ̄ and more general 

meson states

 field theory: provide a model consistency check, give insight into non-perturbative 

properties of fields dynamics



Outline

 γγ sum rules: basic principles

 pair production in QED

 photoproduction of mesons

 conclusions & outlook

V. Pascalutsa, V.P., M. Vanderhaeghen  :   Phys. Rev. D 85, 116001 (2012)
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Sum rules

inelastic LbL scattering - 
photon-photon fusion into 

leptons and hadrons

elastic LbL scattering -  
low-energy structure

dispersion 
theory

Sum rules
�Z

s0

ds

s
[�2(s)� �0(s)] = 0

causality

unitarity LETs

c1 ± c2 =
1

8�
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s0
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Dispersion relations
dispersion relations

the analyticity infers the following dispersion relations:

Re

⇢
f

(±)(s)
g(s)

�
=

1

⇡

1 
�1

ds0

s

0 � s

Im

⇢
f

(±)(s0)
g(s0)

�
, (9)

where
�

indicates the principal-value integration. These relations hold as long as the integral
converges, and otherwise subtractions are needed. Because f

(±)(�s) = ± f

(±)(s) and g(�s) =
g(s), we can express the right-hand side as an integral over positive s only:

Re
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�
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1 
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�
, (10a)

Re f (�)(s) = �2s

⇡

1 

0

ds0
Im f

(�)(s0)

s

02 � s

2
. (10b)

In the physical region (s � 0), the optical theorem relates the imaginary part of these amplitudes
to the total absorption cross-sections with definite polarization of the initial �� state:

Im f

(±)(s) = �s

8
[�0(s)± �2(s) ], (11a)

Im g(s) = �s

8
[�||(s)� �?(s) ]. (11b)

Substituting these expressions in the above dispersion relations one obtains:

Re f (+)(s) = � 1
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ds0 s02
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2
, (12a)
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2
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Re g(s) = � 1
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1 

0

ds0 s02
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0)� �?(s0)

s

02 � s

2
, (12c)

where � = (�0 + �2)/2 = (�|| + �?)/2 is the unpolarized total cross section, and �� = �2 � �0

(0 or 2 show the total helicity of the circularly polarized photons, while k or ? show if the linear
photon polarizations are parallel or perpendicular).

We next recall that gauge invariance and discrete symmetries constrain the low-energy
photon-photon interaction to the Euler-Heisenberg form [8], given by the following Lagrangian
density:
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. Expanding the left-hand side and right-hand
side of Eq. (12) in powers of s and matching them at each order yields a number of sum rules.
At 0th order in s we would find
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=

one-loop result is defined by 
tree-level amplitudes



Applications: meson production
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Meson production in γγ collision
 two-photon state: produced meson has   C=+1

 when both photons are real J=1 final state is forbidden 

(Landau-Yang theorem);

the main contribution comes from J=0: 0-+ (pseudoscalar)                                                                                       

                                          and 0++ (scalar)

    and J=2: 2++  (tensor)

���(P) =
��2

4
m3 |FM����(0,0)|2 two-photons decay rate for the meson

���!M� (s) ⇡ (2J+ 1)16�2
���
mM

�(s�m2
M)

meson contribution to the cross-section 
in the narrow-resonance approximation

 the SRs hold separately for channels of given intrinsic quantum numbers: 

isoscalar and isovector mesons, cc ̄ states

 input for the absorptive part of the SRs: γγ-hadrons response functions, 

can be expressed in terms of γγ→M transition form factors
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Meson production in γγ collision: I=0

the SRs applied to the 
I=0 channel c1 ± c2 =

1

8�

�Z

s0

ds

s2
�k(s)± �?(s)

mM ���
R ds

s (�2 � �0) c1 c2
[MeV] [keV] [nb] [10�4GeV�4] [10�4GeV�4]

� 547.853± 0.024 0.510± 0.026 �191± 10 0 0.65± 0.03
�0 957.78± 0.06 4.29± 0.14 �300± 10 0 0.33± 0.01

ƒ0(980) 980± 10 0.29± 0.07 �19± 5 0.020± 0.005 0
ƒ 00(1370) 1200� 1500 3.8± 1.5 �91± 36 0.049± 0.019 0
ƒ2(1270) 1275.1± 1.2 3.03± 0.35 449± 52 0.141± 0.016 0.141± 0.016
ƒ 02(1525) 1525± 5 0.081± 0.009 7± 1 0.002± 0.000 0.002± 0.000
ƒ2(1565) 1562± 13 0.70± 0.14 56± 11 0.012± 0.002 0.012± 0.002

Sum �89± 66 0.22± 0.03 1.14± 0.04

0++

0-+

2++

0 =
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s0

ds
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[�2 � �0]Q2

2=0



Meson production in γγ collision: I=0

the SRs applied to the 
I=0 channel c1 ± c2 =

1

8�

�Z

s0

ds

s2
�k(s)± �?(s)

mM ���
R ds

s (�2 � �0) c1 c2
[MeV] [keV] [nb] [10�4GeV�4] [10�4GeV�4]

� 547.853± 0.024 0.510± 0.026 �191± 10 0 0.65± 0.03
�0 957.78± 0.06 4.29± 0.14 �300± 10 0 0.33± 0.01

ƒ0(980) 980± 10 0.29± 0.07 �19± 5 0.020± 0.005 0
ƒ 00(1370) 1200� 1500 3.8± 1.5 �91± 36 0.049± 0.019 0
ƒ2(1270) 1275.1± 1.2 3.03± 0.35 449± 52 0.141± 0.016 0.141± 0.016
ƒ 02(1525) 1525± 5 0.081± 0.009 7± 1 0.002± 0.000 0.002± 0.000
ƒ2(1565) 1562± 13 0.70± 0.14 56± 11 0.012± 0.002 0.012± 0.002

Sum �89± 66 0.22± 0.03 1.14± 0.04

0++

0-+

2++

  helicity difference SR: the contribution of η, η’ is entirely compensated by f2(1270), 
f2(1565) and f2’(1525)
 dominant contribution to low-energy LbL scattering constant c2 comes from η, η’ 

and  f2(1270)
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Charmonium states
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Updated Charmonium Spectrum

• 13D2 observed - Only 2 narrow states remaining unobserved: 11D2 and 13D3

• New transitions: 23D1  -> π+π- 11P1; 13D2 -> Ɣ�13P1;  23S1 -> Ɣ�21S0
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charmonium spectrum

lower energies: 
 well understood narrow cc̄ states
 only 2 remain to be observed

above DD ̄ threshold: 
 plethora of new states
 ? nature: molecules, tetra-quarks, hybrids,...

!Ulrich Wiedner



Meson production in γγ collision: cc ̄ mesons

mM ���
R ds

s (�2 � �0) c1 c2
[MeV] [keV] [nb] [10�7GeV

�4
] [10�7GeV

�4
]

�c(1S) 2980.3± 1.2 6.7± 0.9 �15.6± 2.1 0 1.79± 0.24
�c0(1P) 3414.75± 0.31 2.32± 0.13 �3.6± 0.2 0.31± 0.02 0

�c2(1P) 3556.2± 0.09 0.50± 0.06 3.4± 0.4 0.14± 0.02 0.14± 0.02
Sum resonances �15.8± 2.1 0.49± 0.03 1.97± 0.24
duality estimate

continuum (

p
s � 2mD) 15.1

resonances + continuum �0.7± 2.1

0++
0-+

2++

the SRs evaluated for
cc̄ states 
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Meson production in γγ collision: cc ̄ mesons
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Meson production in γγ collision: cc ̄ mesons
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R ds
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quark-hadron duality: replace the integral of the cross section for the γγ→X process (X - 
hadronic final state containing charm quarks) by the corresponding integral of the helicity-
difference cross section for perturbative γγ→cc̄ process

�cont ⌘
�R
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ds 1
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�R
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ds 1
s [�2 � �0] (��! cc̄)
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Meson production in γγ collision: cc ̄ mesons
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R ds

s (�2 � �0) c1 c2
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]
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cc̄ states 
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unmeasured sizable contribution from states above the nearby D ̄D threshold sD⋍14GeV2

quark-hadron duality: replace the integral of the cross section for the γγ→X process (X - 
hadronic final state containing charm quarks) by the corresponding integral of the helicity-
difference cross section for perturbative γγ→cc̄ process

�cont ⌘
�R
sD

ds 1
s [�2 � �0] (��! X) ⇡

�R
sD

ds 1
s [�2 � �0] (��! cc̄)

interplay between production 
of cc̄ states and charmed 
mesons

0 =

�Z

s0

ds
1

(s+Q2
1)
[�2 � �0]Q2

2=0



Meson production in γ*γ* collision
one photon is virtual Q12, second photon is real or quasi-real 
Q22≃0:
axial-vector mesons 1++ are also allowed if one of the 

photons is virtual γ*γ*→f1(1285) / f1(1420) measured L3 Coll. 



Meson production in γ*γ* collision
one photon is virtual Q12, second photon is real or quasi-real 
Q22≃0:
axial-vector mesons 1++ are also allowed if one of the 

photons is virtual γ*γ*→f1(1285) / f1(1420) measured L3 Coll. 

sum rules involving long itudinally 
polarized cross-sections: cancelation 
mechanism between scalar, axial-vector 
and tensor mesons 

0 =

�Z

s0

ds
1

(s+Q2
1)

2

2
4�k + �LT +

(s+Q2
1)

Q1Q2
��TL

3
5
Q2
2=0



mM ���
R ds

s2 �k(s)
R
ds
ï
1
s

��TL
Q1Q2

ò

Q2
� =0

R
ds
ï

1
s2 �k +

1
s

��TL
Q1Q2

ò

Q2
� =0

[MeV] [keV] [nb / GeV2] [nb / GeV2] [nb / GeV2]
ƒ1(1285) 1281.8± 0.6 3.5± 0.8 0 �93± 21 �93± 21
ƒ1(1420) 1426.4± 0.9 3.2± 0.9 0 �50± 14 �50± 14
ƒ0(980) 980± 10 0.29± 0.07 20± 5 0 20± 5
ƒ 00(1370) 1200� 1500 3.8± 1.5 48± 19 0 48± 19
ƒ2(1270) 1275.1± 1.2 3.03± 0.35 138± 16 ¶ 0 138± 16
ƒ 02(1525) 1525± 5 0.081± 0.009 1.5± 0.2 ¶ 0 1.5± 0.2
ƒ2(1565) 1562± 13 0.70± 0.14 12± 2 ¶ 0 12± 2

Sum 76± 36

Meson production in γ*γ* collision
one photon is virtual Q12, second photon is real or quasi-real 
Q22≃0:
axial-vector mesons 1++ are also allowed if one of the 

photons is virtual γ*γ*→f1(1285) / f1(1420) measured L3 Coll. 

sum rules involving long itudinally 
polarized cross-sections: cancelation 
mechanism between scalar, axial-vector 
and tensor mesons 

0 =

�Z

s0

ds
1

(s+Q2
1)

2

2
4�k + �LT +

(s+Q2
1)

Q1Q2
��TL

3
5
Q2
2=0

uncertainty: higher mass states or non-resonant contributions with axial-vector quantum numbers



Meson production in γ*γ* collision
one photon is virtual Q12, second photon is real 
or quasi-real Q22≃0

at finite Q12 the SRs imply information on meson transition form-factors: 

estimate for the f2(1270) tensor FF in terms of the η and η’ FFs and 
for the a2(1320) tensor FF in terms of the π0 FF.
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Thank You 
for attention!


