Light-by-light scattering sum rules

Vladyslav Pauk,

Johannes Gutenberg University,

Mainz, Germany

12th meeting of the Radio Monte Carlo WG Mainz, September 27-28, 2012

transition form-factors of $\gamma\gamma \rightarrow M$ for π^0 , η , η'

 $Q_1^2 = 0$ - one quasi-real photon

space-like region 1.5 GeV² $< Q_2^2 < 40 \text{ GeV}^2$

transition form-factors of $\gamma\gamma \rightarrow M$ for a2(1320), f2(1270), f2' (1525)

hadronic contribution to the $(g-2)_{\mu}$

loop integrals \rightarrow full information about $\gamma\gamma \longrightarrow \gamma\gamma$ for all channels in wide energy range!

hadronic contribution to the $(g-2)_{\mu}$

 $\gamma^*\gamma^* \rightarrow \text{meson}$ Transition Form Factors

Y

TFF

M

F(Q₁², Q₂²)

loop integrals \rightarrow full information about $\gamma\gamma \longrightarrow \gamma\gamma$ for all channels in wide energy range + a model for extrapolation!

hadronic contribution to the $(g-2)_{\mu}$

loop integrals \rightarrow full information about $\gamma\gamma \longrightarrow \gamma\gamma$ for all channels in wide energy range + a model for extrapolation!

non-perturbative dynamics of QCD (e.g. $\eta-\eta'$ mixing and symmetry breaking mechanisms)

hadronic contribution to the $(g-2)_{\mu}$

loop integrals \rightarrow full information about $\gamma\gamma \longrightarrow \gamma\gamma$ for all channels in wide energy range + a model for extrapolation!

 $\gamma^*\gamma^* \rightarrow meson$ Transition Form Factors

 \longrightarrow low Q_2^2

non-perturbative dynamics of QCD (e.g. $\eta-\eta'$ mixing and symmetry breaking mechanisms)

 \rightarrow high Q_2^2

perturbative QCD and quark structure of hadrons (meson distribution amplitudes)

Gerasimov-Drell-Hearn sum rule

$$\frac{e^2}{2M^2}\kappa^2 = \frac{1}{\pi} \int_{0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu) \right]$$

1966

Gerasimov-Drell-Hearn sum rule

$$\frac{e^2}{2M^2}\kappa^2 = \frac{1}{\pi} \int_{0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu) \right]$$

Gerasimov-Drell-Hearn sum rule

$$\frac{e^2}{2M^2}\kappa^2 = \frac{1}{\pi} \int_{0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{3/2}(\nu) - \sigma_{1/2}(\nu) \right]$$

no anomalous moments!

• hadronic physics: lead to constraints on $\gamma\gamma^*$ transition FFs of $q\bar{q}$ and more general meson states

- hadronic physics: lead to constraints on $\gamma\gamma^*$ transition FFs of $q\bar{q}$ and more general meson states
- field theory: provide a model consistency check, give insight into non-perturbative properties of fields dynamics

Outline

- yy sum rules: basic principles
- pair production in QED
- photoproduction of mesons
- conclusions & outlook

V. Pascalutsa, V.P., M. Vanderhaeghen: Phys. Rev. D 85, 116001 (2012)

Sum rules: derivation

inelastic LbL scattering photon-photon fusion into leptons and hadrons

inelastic LbL scattering – photon-photon fusion into leptons and hadrons

elastic LbL scattering - low-energy structure

$\gamma^*\gamma^* \longrightarrow \gamma^*\gamma^*$ forward scattering

Mandelstam variables:
$$s = (q_1 + q_2)^2$$
 $t = (q_1 - q_3)^2 = 0$
 $u = (q_1 - q_2)^2 = -s$

$\gamma^*\gamma^* \longrightarrow \gamma^*\gamma^*$ forward scattering

$$\lambda_1$$
, q_1 λ'_1 , q_1 Mandelstam variables: $s = (q_1 + q_2)^2$ $t = (q_1 - q_3)^2 = 0$ $u = (q_1 - q_2)^2 = -s$ λ'_2 , q_2 $\lambda'_{1,2} = \pm 1$ \Rightarrow 8 helicity amplitudes: $M_{\lambda'_1\lambda'_2\lambda_1\lambda_2}(s)$

$\gamma^* \longrightarrow \gamma^* \gamma^*$ forward scattering

$$\lambda_1, q_1$$
 λ'_1, q_1
 λ'_1, q_1
 λ'_2, q_2
 λ'_2, q_2

Mandelstam variables:
$$s = (q_1 + q_2)^2$$
 $t = (q_1 - q_3)^2 = 0$
 $u = (q_1 - q_2)^2 = -s$

$$\lambda'_{2}$$
, q_{2} $\lambda'_{1,2} = \pm 1$ \longrightarrow 8 helicity amplitudes: $M_{\lambda'_{1}\lambda'_{2}\lambda_{1}\lambda_{2}}(s)$

$$M_{\lambda_1'\lambda_2'\lambda_1\lambda_2}(s)$$

space & time symmetries:

$$T: M_{\lambda'_1\lambda'_2,\lambda_1\lambda_2} = M_{\lambda_1\lambda_2,\lambda'_1\lambda'_2}$$

$$P: M_{\lambda'_1\lambda'_2,\lambda_1\lambda_2} = M_{-\lambda'_1-\lambda'_2,-\lambda_1-\lambda_2}$$

crossing symmetry:

$$M_{\lambda'_{1}\lambda'_{2},\lambda_{1}\lambda_{2}}(\nu,Q_{1}^{2},Q_{2}^{2}) =$$

$$= M_{\lambda'_{1}-\lambda'_{2},\lambda_{1}-\lambda_{2}}(-\nu,Q_{1}^{2},Q_{2}^{2})$$

3 independent amplitudes:

$\gamma^*\gamma^* \longrightarrow \gamma^*\gamma^*$ forward scattering

$$\lambda_1, q_1$$
 λ_1, q_1
 λ_1, q_1
 λ_2, q_2
 λ_2, q_3

Mandelstam variables:
$$s = (q_1 + q_2)^2$$
 $t = (q_1 - q_3)^2 = 0$
 $u = (q_1 - q_2)^2 = -s$

$$\lambda'_{2}$$
, q_{2} $\lambda'_{1,2} = \pm 1$ \longrightarrow 8 helicity amplitudes: $M_{\lambda'_{1}\lambda'_{2}\lambda_{1}\lambda_{2}}(s)$

$$M_{\lambda_1'\lambda_2'\lambda_1\lambda_2}(s)$$

space & time symmetries:

$$T: M_{\lambda'_1\lambda'_2,\lambda_1\lambda_2} = M_{\lambda_1\lambda_2,\lambda'_1\lambda'_2}$$

$$P: M_{\lambda'_1\lambda'_2,\lambda_1\lambda_2} = M_{-\lambda'_1-\lambda'_2,-\lambda_1-\lambda_2}$$

crossing symmetry:

$$M_{\lambda'_{1}\lambda'_{2},\lambda_{1}\lambda_{2}}(\nu,Q_{1}^{2},Q_{2}^{2}) =$$

$$= M_{\lambda'_{1}-\lambda'_{2},\lambda_{1}-\lambda_{2}}(-\nu,Q_{1}^{2},Q_{2}^{2})$$

3 independent amplitudes:

$$f^{(+)}(s) = M_{++++}(s) + M_{+-+-}(s)$$

$$g(s) = M_{++--}(s)$$

odd:

$$f^{(-)}(s) = M_{++++}(s) - M_{+-+-}(s)$$

dispersion relations

$$\operatorname{Re}\left\{\begin{array}{l} f^{(+)}(s) \\ g(s) \end{array}\right\} = \frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}s' \, s'}{s'^2 - s^2} \operatorname{Im}\left\{\begin{array}{l} f^{(+)}(s') \\ g(s') \end{array}\right\}$$

$$\operatorname{Re} f^{(-)}(s) = -\frac{2s}{\pi} \int_{0}^{\infty} \mathrm{d}s' \, \frac{\operatorname{Im} f^{(-)}(s')}{s'^2 - s^2}$$

Observables

Euler-Heisenberg Lagrangian

$$\mathcal{L}^{(8)} = c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2$$

$$f^{(+)}(s) = 16s(c_1 + c_2) + \mathcal{O}(s^4)$$

$$g(s) = 16s(c_1 - c_2) + \mathcal{O}(s^4)$$

$$f^{(-)}(s) = \mathcal{O}(s^3)$$

dispersion relations

$$\operatorname{Re} \left\{ \begin{array}{l} f^{(+)}(s) \\ g(s) \end{array} \right\} = \frac{2}{\pi} \int_{0}^{\infty} \frac{\mathrm{d}s' \, s'}{s'^2 - s^2} \operatorname{Im} \left\{ \begin{array}{l} f^{(+)}(s') \\ g(s') \end{array} \right\}$$

$$\operatorname{Re} f^{(-)}(s) = -\frac{2s}{\pi} \int_{0}^{\infty} \mathrm{d}s' \, \frac{\operatorname{Im} f^{(-)}(s')}{s'^2 - s^2}$$

Euler-Heisenberg Lagrangian

$$\mathcal{L}^{(8)} = c_1 (F_{\mu\nu} F^{\mu\nu})^2 + c_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2$$

$$f^{(+)}(s) = 16s(c_1 + c_2) + \mathcal{O}(s^4)$$
$$g(s) = 16s(c_1 - c_2) + \mathcal{O}(s^4)$$

$$f^{(-)}(s) = \mathcal{O}(s^3)$$

Observables

optical theorem

$$\operatorname{Im} f^{(-)}(s) = -\frac{s}{8} \left[\Delta \sigma(s) \right]$$

$$\operatorname{Im} f^{(+)}(s) = -\frac{s}{8} \left[\sigma_{tot}(s) \right]$$

$$\operatorname{Im} g(s) = -\frac{s}{8} \left[\sigma_{\parallel}(s) - \sigma_{\perp}(s) \right]$$

expand the left-hand side and right-hand side of in powers of s and match them at each order

$$0 = \int_{0}^{\infty} ds \, \frac{\Delta \sigma(s)}{s}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_0^\infty ds \, \frac{\sigma_{\parallel}(s) \pm \sigma_{\perp}(s)}{s^2}$$

expand the left-hand side and right-hand side of in powers of s and match them at each order

$$0 = \int_{0}^{\infty} ds \, \frac{\Delta \sigma(s)}{s}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_0^\infty ds \, \frac{\sigma_{||}(s) \pm \sigma_{\perp}(s)}{s^2}$$

virtual photons:

- 8 response functions: σ_{TT} , τ_{TT} , τ_{TT}^{a} , σ_{TL} , σ_{LT} , σ_{LL} , τ_{TL} , τ_{TL}^{a}
- low-energy expansion up to the order of $\mathcal{O}(5^3)$: 6 new structure constants enter
- the sum rules can be define only for the case of one quasi-real photon

3 superconvergent relations:

helicity difference sum rule

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_0 - \sigma_2 \right]_{Q_2^2 = 0}$$

sum rules involving longitudinal photons

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \left[\frac{\tau_{TL}}{Q_1 Q_2} \right]_{Q_2^2 = 0}$$

3 superconvergent relations:

helicity difference sum rule

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_0 - \sigma_2\right]_{Q_2^2 = 0}$$

sum rules involving longitudinal photons

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \left[\frac{\tau_{TL}}{Q_1 Q_2} \right]_{Q_2^2 = 0}$$

SRs involving LbL low-energy constants:

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \left[\sigma_{\parallel}(s) \pm \sigma_{\perp}(s) \right]$$

...

Digression: production of a pair

Pair production: spinor QED

QED of point-like spin-1/2 particle:

$$\mathcal{L} = \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \bar{\psi} \gamma^{\mu} \psi A_{\mu}$$

Pair production: spinor QED

QED of point-like spin-1/2 particle:

$$\mathcal{L} = \bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - e \bar{\psi} \gamma^{\mu} \psi A_{\mu}$$

Pair production: spinor QED

QED of point-like spin-1/2 particle:

$$\mathcal{L} = \bar{\psi}i\gamma^{\mu}\partial_{\mu}\psi - m\bar{\psi}\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

$\gamma\gamma \rightarrow X$ response functions:

$$\begin{split} \left[\sigma_{\parallel} + \sigma_{\perp}\right]_{Q_{2}^{2}=0} &= \alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left[-\left(1 - \frac{Q_{1}^{2}}{s}\right)^{2} - \frac{4m^{2}}{s} \right] + 2\left(1 + \frac{4m^{2}}{s} - \frac{8m^{4}}{s^{2}} + \frac{Q_{1}^{4}}{s^{2}}\right) L \right\}, \\ \left[\sigma_{\parallel} - \sigma_{\perp}\right]_{Q_{2}^{2}=0} &= -\alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left(\frac{2m^{2}}{s} + \frac{Q_{1}^{4}}{s^{2}}\right) + \frac{8m^{2}}{s} \left(\frac{m^{2}}{s} + \frac{Q_{1}^{2}}{s}\right) L \right\}, \\ \left[\sigma_{0} - \sigma_{2}\right]_{Q_{2}^{2}=0} &= \alpha^{2} 8\pi \frac{s}{(s+Q_{1}^{2})^{2}} \left\{ \beta \left(3 - \frac{Q_{1}^{2}}{s}\right) - 2\left(1 - \frac{Q_{1}^{2}}{s}\right) L \right\}, \\ \left[\frac{1}{Q_{1}^{2}} \sigma_{LT}\right]_{Q_{2}^{2}=0} &= \alpha^{2} 16\pi \frac{s}{(s+Q_{1}^{2})^{3}} \left\{ \beta - \frac{4m^{2}}{s} L \right\}, \\ \left[\frac{1}{Q_{1}Q_{2}} \tau_{TL}\right]_{Q_{2}^{2}=0} &= 0, \end{split}$$

$$L = \ln \left(\frac{\sqrt{s}}{2m} \left[1 + \sqrt{1 - \frac{4m^{2}}{s}}\right]\right) \\ \beta = \sqrt{1 - \frac{4m^{2}}{s}} \\ \left[\frac{1}{Q_{1}Q_{2}} \tau_{TL}\right]_{Q_{2}^{2}=0} &= \alpha^{2} 16\pi \frac{s^{2}}{(s+Q_{1}^{2})^{4}} \left\{ -\beta \left(1 - \frac{2Q_{1}^{2}}{s}\right) + \left(-\frac{2Q_{1}^{2}}{s} + \frac{4m^{2}}{s}\right) L \right\}, \end{split}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^{\alpha} \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_2 - \sigma_0\right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_1^2)}{Q_1Q_2} \tau_{TL}^{\alpha}\right]_{Q_2^2 = 0}$$

$$Q_2^2 = 0$$

$$Q_1^2 - \text{arbitrary}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_2 - \sigma_0\right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s+Q_1^2)}{Q_1Q_2} \tau_{TL}^{\alpha}\right]_{Q_2^2 = 0}$$

hold exactly at tree-level!

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^{\alpha} \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}$$

linearly polarized cross sections:

$$\left[\sigma_{\parallel} + \sigma_{\perp} \right]_{Q_{2}^{2}=0} = \alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left[-\left(1 - \frac{Q_{1}^{2}}{s}\right)^{2} - \frac{4m^{2}}{s} \right] + 2\left(1 + \frac{4m^{2}}{s} - \frac{8m^{4}}{s^{2}} + \frac{Q_{1}^{4}}{s^{2}}\right) L \right\}$$

$$\left[\sigma_{\parallel} - \sigma_{\perp} \right]_{Q_{2}^{2}=0} = -\alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left(\frac{2m^{2}}{s} + \frac{Q_{1}^{4}}{s^{2}}\right) + \frac{8m^{2}}{s} \left(\frac{m^{2}}{s} + \frac{Q_{1}^{2}}{s}\right) L \right\}$$

linearly polarized cross sections:

$$\left[\sigma_{\parallel} + \sigma_{\perp} \right]_{Q_{2}^{2}=0} = \alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left[-\left(1 - \frac{Q_{1}^{2}}{s}\right)^{2} - \frac{4m^{2}}{s} \right] + 2\left(1 + \frac{4m^{2}}{s} - \frac{8m^{4}}{s^{2}} + \frac{Q_{1}^{4}}{s^{2}}\right) L \right\}$$

$$\left[\sigma_{\parallel} - \sigma_{\perp} \right]_{Q_{2}^{2}=0} = -\alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left(\frac{2m^{2}}{s} + \frac{Q_{1}^{4}}{s^{2}}\right) + \frac{8m^{2}}{s} \left(\frac{m^{2}}{s} + \frac{Q_{1}^{2}}{s}\right) L \right\}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \left[\sigma_{\parallel}(s) \pm \sigma_{\perp}(s) \right]$$

linearly polarized cross sections:

$$\begin{split} \left[\sigma_{\parallel} + \sigma_{\perp}\right]_{Q_{2}^{2}=0} &= \alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left[-\left(1 - \frac{Q_{1}^{2}}{s}\right)^{2} - \frac{4m^{2}}{s} \right] + 2\left(1 + \frac{4m^{2}}{s} - \frac{8m^{4}}{s^{2}} + \frac{Q_{1}^{4}}{s^{2}}\right) L \right\} \\ \left[\sigma_{\parallel} - \sigma_{\perp}\right]_{Q_{2}^{2}=0} &= -\alpha^{2} 8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{ \beta \left(\frac{2m^{2}}{s} + \frac{Q_{1}^{4}}{s^{2}}\right) + \frac{8m^{2}}{s} \left(\frac{m^{2}}{s} + \frac{Q_{1}^{2}}{s}\right) L \right\} \end{split}$$

sum rules

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{ds}{s^2} \left[\sigma_{\parallel}(s) \pm \sigma_{\perp}(s) \right]$$

LbL low-energy constants

$$c_1 = \frac{\alpha^2}{m^4} \frac{1}{90}$$
 $c_2 = \frac{\alpha^2}{m^4} \frac{7}{360}$

linearly polarized cross sections:

$$\begin{split} \left[\sigma_{\parallel} + \sigma_{\perp}\right]_{Q_{2}^{2}=0} \; &= \; \alpha^{2}8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{\beta \left[-\left(1-\frac{Q_{1}^{2}}{s}\right)^{2} - \frac{4m^{2}}{s}\right] + 2\left(1+\frac{4m^{2}}{s} - \frac{8m^{4}}{s^{2}} + \frac{Q_{1}^{4}}{s^{2}}\right)L\right\} \\ \left[\sigma_{\parallel} - \sigma_{\perp}\right]_{Q_{2}^{2}=0} \; &= \; -\alpha^{2}8\pi \frac{s^{2}}{(s+Q_{1}^{2})^{3}} \left\{\beta \left(\frac{2m^{2}}{s} + \frac{Q_{1}^{4}}{s^{2}}\right) + \frac{8m^{2}}{s} \left(\frac{m^{2}}{s} + \frac{Q_{1}^{2}}{s}\right)L\right\} \end{split}$$

sum rules

 $c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \left[\sigma_{\parallel}(s) \pm \sigma_{\perp}(s) \right]$

LbL low-energy constants

$$c_1 = \frac{\alpha^2}{m^4} \frac{1}{90}$$
 $c_2 = \frac{\alpha^2}{m^4} \frac{7}{360}$

explicit one-loop calculation

one-loop result is defined by tree-level amplitudes

Applications: meson production

two-photon state: produced meson has C=+1

- two-photon state: produced meson has C=+1
- when both photons are real A final state is forbidden
 (Landau-Yang theorem);

- two-photon state: produced meson has C=+1
- when both photons are real A final state is forbidden
 (Landau-Yang theorem);

the main contribution comes from J=0: 0⁻⁺ (pseudoscalar)

and 0⁺⁺ (scalar)

and J=2: 2++ (tensor)

- two-photon state: produced meson has C=+1
- when both photons are real final state is forbidden
 (Landau-Yang theorem);

the main contribution comes from J=0: 0⁻⁺ (pseudoscalar)

and 0⁺⁺ (scalar)

and J=2: 2++ (tensor)

• the SRs hold separately for channels of given intrinsic quantum numbers:

isoscalar and isovector mesons, cc states

- two-photon state: produced meson has C=+1
- when both photons are real [final state is forbidden
 (Landau-Yang theorem);

the main contribution comes from $J=0: 0^{-+}$ (pseudoscalar)

and 0⁺⁺ (scalar)

and J=2: 2++ (tensor)

- the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states
- input for the absorptive part of the SRs: $\gamma\gamma$ -hadrons response functions, can be expressed in terms of $\gamma\gamma \rightarrow M$ transition form factors

- two-photon state: produced meson has C=+1
- when both photons are real final state is forbidden
 (Landau-Yang theorem);

the main contribution comes from $J=0: 0^{-+}$ (pseudoscalar)

and 0⁺⁺ (scalar)

and J=2: 2++ (tensor)

- the SRs hold separately for channels of given intrinsic quantum numbers: isoscalar and isovector mesons, cc states
- input for the absorptive part of the SRs: $\gamma\gamma$ -hadrons response functions, can be expressed in terms of $\gamma\gamma \rightarrow M$ transition form factors

$$\sigma_{\Lambda}^{\gamma\gamma\to M}(s) \approx (2J+1)16\pi^2 \frac{\Gamma_{\gamma\gamma}}{m_M} \delta(s-m_M^2)$$

meson contribution to the cross-section in the narrow-resonance approximation

$$\Gamma_{\gamma\gamma}(\mathcal{P}) = \frac{\pi\alpha^2}{4} m^3 |F_{\mathcal{M}\gamma^*\gamma^*}(0,0)|^2$$

two-photons decay rate for the meson

Meson production in YY collision: I=0

the SRs applied to the I=0 channel

$$\eta$$
, η' , f_0 , f_0' , f_2 , f_2' ...

Meson production in YY collision: I=0

the SRs applied to the I=0 channel

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \, \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

	m_M	$\Gamma_{\gamma\gamma}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	<i>c</i> ₁	<i>C</i> ₂	
	[MeV]	[keV]	[nb]	$[10^{-4} \text{GeV}^{-4}]$	$[10^{-4} {\rm GeV}^{-4}]$	
η	547.853 ± 0.024	0.510 ± 0.026	-191 ± 10	0	0.65 ± 0.03	
η'	957.78 ± 0.06	4.29 ± 0.14	-300 ± 10	0	0.33 ± 0.01	
$f_0(980)$	980 ± 10	0.29 ± 0.07	-19 ± 5	0.020 ± 0.005	0	
$f_0'(1370)$	1200 – 1500	3.8 ± 1.5	-91 ± 36	0.049 ± 0.019	0	
$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	449 ± 52	0.141 ± 0.016	0.141 ± 0.016	
$f_2'(1525)$	1525 ± 5	0.081 ± 0.009	7 ± 1	0.002 ± 0.000	0.002 ± 0.000	
$f_2(1565)$	1562 ± 13	0.70 ± 0.14	56 ± 11	0.012 ± 0.002	0.012 ± 0.002	
Sum			-89 ± 66	0.22 ± 0.03	1.14 ± 0.04	

0-+

0++

2++

Meson production in YY collision: I=0

the SRs applied to the I=0 channel
$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_2 - \sigma_0\right]_{Q_2^2 = 0}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \, \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

		m_M	$\Gamma_{\gamma\gamma}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	<i>c</i> ₁	C ₂
1		[MeV]	[keV]	[nb]	$[10^{-4} \text{GeV}^{-4}]$	$[10^{-4} \text{GeV}^{-4}]$
+	η	547.853 ± 0.024	0.510 ± 0.026	-191 ± 10	0	0.65 ± 0.03
ı	η'	957.78 ± 0.06	4.29 ± 0.14	-300 ± 10	0	0.33 ± 0.01
ı	$f_0(980)$	980 ± 10	0.29 ± 0.07	-19 ± 5	0.020 ± 0.005	0
+	$f_0'(1370)$	1200 – 1500	3.8 ± 1.5	$\boxed{-91\pm36}$	0.049 ± 0.019	0
	$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	$\boxed{449 \pm 52}$	0.141 ± 0.016	0.141 ± 0.016
+	$f_2'(1525)$	1525 ± 5	0.081 ± 0.009	7 ± 1	0.002 ± 0.000	0.002 ± 0.000
	$f_2(1565)$	1562 ± 13	0.70 ± 0.14	$\boxed{56 \pm 11}$	0.012 ± 0.002	0.012 ± 0.002
	Sum			-89 ± 66	0.22 ± 0.03	1.14 ± 0.04

- helicity difference SR: the contribution of η , η' is entirely compensated by $f_2(1270)$, $f_2(1565)$ and $f_2'(1525)$
- dominant contribution to low-energy LbL scattering constant c₂ comes from η, η' and f₂(1270)

Charmonium states

lower energies:

- well understood narrow cc states
- only 2 remain to be observed

Charmonium states

above DD threshold:

charmonium spectrum

- plethora of new states
- ? nature: molecules, tetra-quarks, hybrids,...

lower energies:

- well understood narrow cc states
- only 2 remain to be observed

the SRs evaluated for cc states

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

	∞
$c_1 + c_2 - \frac{1}{2}$	$\int ds$
$\frac{c_1+c_2-\overline{a_n}}{8\pi}$	$\int_{0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$
S ₍)

				V	
	m_M	$\Gamma_{\gamma\gamma}$ $^{\circ}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	c 1	C ₂
	[MeV]	[keV]	[nb]	$[10^{-7} {\rm GeV}^{-4}]$	$[10^{-7} \text{GeV}^{-4}]$
$\eta_c(1S)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
$\chi_{c0}(1P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
$\chi_{c2}(1P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
duality estimate					
continuum $(\sqrt{s} \ge 2m_D)$			15.1		
$ \ \ $			-0.7 ± 2.1		

the SRs evaluated for cc states

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

	∞
$c_1 + c_2 = 1$	$\int ds$
$\begin{bmatrix} c_1 + c_2 - \frac{\pi}{8\pi} \end{bmatrix}$	$\int_{0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$
S ₍)

	m_M	$\Gamma_{\gamma\gamma}$ $^{\circ}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	c ₁	C ₂
	[MeV]	[keV]	[nb]	$[10^{-7} {\rm GeV}^{-4}]$	$[10^{-7} \text{GeV}^{-4}]$
$\eta_c(1S)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
$\chi_{c0}(1P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
$\chi_{c2}(1P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
duality estimate					
continuum $(\sqrt{s} \ge 2m_D)$			15.1		
$\boxed{ \text{resonances} + \text{continuum} }$			-0.7 ± 2.1		

the SRs evaluated for cc states

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

	∞
$c_1 \pm c_2 = \frac{1}{2}$	$\int_{0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$
8π J so	5 ² " ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

	m_M	$\Gamma_{\gamma\gamma}$ $^{\circ}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	<i>c</i> ₁	C ₂
	[MeV]	[keV]	[nb]	$[10^{-7} \text{GeV}^{-4}]$	$[10^{-7} \text{GeV}^{-4}]$
$\eta_c(15)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
$\chi_{c0}(1P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
$\chi_{c2}(1P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
duality estimate					
continuum $(\sqrt{s} \ge 2m_D)$			15.1		
$ \ \ $			-0.7 ± 2.1		

unmeasured sizable contribution from states above the nearby $\bar{D}D$ threshold $s_D=14GeV^2$

the SRs evaluated for cc states

$$0 = \int_{s_0}^{\infty} ds \frac{1}{(s+Q_1^2)} \left[\sigma_2 - \sigma_0 \right]_{Q_2^2 = 0}$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \, \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

П		m_M	$\Gamma_{\gamma\gamma}$	$\int \frac{ds}{s} \left(\sigma_2 - \sigma_0 \right)$	<i>c</i> ₁	C ₂
		[MeV]	[keV]	[nb]	$[10^{-7} {\rm GeV}^{-4}]$	$[10^{-7} \text{GeV}^{-4}]$
	$\eta_c(15)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
	$\chi_{c0}(1P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
	$\chi_{c2}(1P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
	Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
	duality estimate					
	continuum $(\sqrt{s} \ge 2m_D)$			15.1		
	${ m resonances} + { m continuum}$			-0.7 ± 2.1		

unmeasured sizable contribution from states above the nearby $\bar{D}D$ threshold $s_D=14GeV^2$

quark-hadron duality: replace the integral of the cross section for the $\gamma\gamma \rightarrow X$ process (X hadronic final state containing charm quarks) by the corresponding integral of the helicitydifference cross section for perturbative $\gamma\gamma \rightarrow c\bar{c}$ process

$$I_{cont} \equiv \int_{s_D}^{\infty} ds \, \frac{1}{s} \left[\sigma_2 - \sigma_0 \right] (\gamma \gamma \to X) \approx \int_{s_D}^{\infty} ds \, \frac{1}{s} \left[\sigma_2 - \sigma_0 \right] (\gamma \gamma \to c\bar{c})$$

the SRs evaluated for cc states

$$\left[0 = \int_{s_0}^{\infty} ds \frac{1}{(s + Q_1^2)} \left[\sigma_2 - \sigma_0\right]_{Q_2^2 = 0}\right] \left[c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{ds}{s^2} \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)\right]$$

$$c_1 \pm c_2 = \frac{1}{8\pi} \int_{s_0}^{\infty} \frac{\mathrm{d}s}{s^2} \, \sigma_{\parallel}(s) \pm \sigma_{\perp}(s)$$

			1		
	m_M	$\Gamma_{\gamma\gamma}$ $^{\circ}$	$\int \frac{ds}{s} (\sigma_2 - \sigma_0)$	c 1	C ₂
	$[\mathrm{MeV}]$	[keV]	[nb]	$[10^{-7} {\rm GeV}^{-4}]$	$[10^{-7} \mathrm{GeV}^{-4}]$
$\eta_c(1S)$	2980.3 ± 1.2	6.7 ± 0.9	-15.6 ± 2.1	0	1.79 ± 0.24
$\chi_{c0}(1P)$	3414.75 ± 0.31	2.32 ± 0.13	-3.6 ± 0.2	0.31 ± 0.02	0
$\chi_{c2}(1P)$	3556.2 ± 0.09	0.50 ± 0.06	3.4 ± 0.4	0.14 ± 0.02	0.14 ± 0.02
Sum resonances			-15.8 ± 2.1	0.49 ± 0.03	1.97 ± 0.24
duality estimate					
continuum $(\sqrt{s} \ge 2m_D)$			15.1		
resonances + continuum			-0.7 ± 2.1		

unmeasured sizable contribution from states above the nearby $\bar{D}D$ threshold $s_D=14GeV^2$

quark-hadron duality: replace the integral of the cross section for the $\gamma\gamma \rightarrow X$ process (X hadronic final state containing charm quarks) by the corresponding integral of the helicitydifference cross section for perturbative $\gamma\gamma \rightarrow c\bar{c}$ process

$$I_{cont} \equiv \int_{s_D}^{\infty} ds \, \frac{1}{s} \left[\sigma_2 - \sigma_0 \right] (\gamma \gamma \to X) \approx \int_{s_D}^{\infty} ds \, \frac{1}{s} \left[\sigma_2 - \sigma_0 \right] (\gamma \gamma \to c\bar{c})$$

interplay between production of cc states and charmed mesons

one photon is virtual Q_1^2 , second photon is real or quasi-real $Q_2^2 \approx 0$:

axial-vector mesons 1^{++} are also allowed if one of the photons is virtual $\gamma^*\gamma^* \rightarrow f_1(1285)$ / $f_1(1420)$ measured L3 Coll.

one photon is virtual Q_1^2 , second photon is real or quasi-real $Q_2^2 \sim 0$.

axial-vector mesons 1^{++} are also allowed if one of the photons is virtual $\gamma^*\gamma^* \rightarrow f_1(1285)$ / $f_1(1420)$ measured L3 Coll.

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^{\alpha} \right]_{Q_2^2 = 0}$$

sum rules involving longitudinally polarized cross-sections: cancelation mechanism between scalar, axial-vector and tensor mesons

one photon is virtual Q_1^2 , second photon is real or quasi-real

axial-vector mesons 1⁺⁺ are also allowed if one of the photons is virtual $\gamma^*\gamma^* \rightarrow f_1(1285)$ / $f_1(1420)$ measured L3 Coll.

$$0 = \int_{s_0}^{\infty} ds \, \frac{1}{(s + Q_1^2)^2} \left[\sigma_{\parallel} + \sigma_{LT} + \frac{(s + Q_1^2)}{Q_1 Q_2} \tau_{TL}^a \right]_{Q_2^2 = 0}$$

sum rules involving longitudinally polarized cross-sections: cancelation mechanism between scalar, axial-vector and tensor mesons

		m_M	$\Gamma_{\gamma\gamma}$	$\int \frac{ds}{s^2} \sigma_{\parallel}(s)$	$\int ds \left[\frac{1}{s} \frac{\tau_{TL}^a}{Q_1 Q_2} \right]_{Q_i^2 = 0}$	$\int ds \left[\frac{1}{s^2} \sigma_{\parallel} + \frac{1}{s} \frac{\tau_{TL}^a}{Q_1 Q_2} \right]_{Q_i^2 = 0}$
		[MeV]	[keV]	$[{ m nb}\ /\ { m GeV}^2]$	$[\mathrm{nb} \ / \ \mathrm{GeV}^2]^{'}$	$[nb / GeV^2]$
ı	$f_1(1285)$	1281.8 ± 0.6	3.5 ± 0.8	0	-93 ± 21	-93 ± 21
۱	$f_1(1420)$	1426.4 ± 0.9	3.2 ± 0.9	0	-50 ± 14	-50 ± 14
۱	$f_0(980)$	980 ± 10	0.29 ± 0.07	20 ± 5	0	20 ± 5
۱	$f_0'(1370)$	1200 – 1500	3.8 ± 1.5	48 ± 19	0	48 ± 19
	$f_2(1270)$	1275.1 ± 1.2	3.03 ± 0.35	138 ± 16	≥ 0	138 ± 16
	$f_2'(1525)$	1525 ± 5	0.081 ± 0.009	1.5 ± 0.2	≥ 0	(1.5 ± 0.2)
	$f_2(1565)$	1562 ± 13	0.70 ± 0.14	12 ± 2	≥ 0	12 ± 2
	Sum					76 ± 36

uncertainty: higher mass states or non-resonant contributions with axial-vector quantum numbers

one photon is virtual Q_1^2 , second photon is real or quasi-real $Q_2^2 \approx 0$

at finite Q_1^2 the SRs imply information on meson transition form-factors: estimate for the $f_2(1270)$ tensor FF in terms of the η and η' FFs and for the $a_2(1320)$ tensor FF in terms of the π^0 FF.

one photon is virtual Q_1^2 , second photon is real or quasi-real $Q_2^2 \approx 0$

at finite Q_1^2 the SRs imply information on meson transition form-factors: estimate for the $f_2(1270)$ tensor FF in terms of the η and η' FFs and for the $a_2(1320)$ tensor FF in terms of the π^0 FF.

Thank You for attention!