

Working Group on Radiative Corrections and Generators for Low Energy Hadronic Cross Section and Luminosity

Development of Monte Carlo Generator for $e^+e^- \rightarrow 6\pi$ process study in CMD-3 experiment

Peter A. Lukin Budker Institute of Nuclear Physics, Novosibirsk, Russia

Motivation

VEPP-2000 (2010 - ...), $E = 0.36 - 2.0 \Gamma_9 B$

- 1 vacuum chamber
- 2 drift chamber
- 3 electromagnetic calorimeter BGO
- 4 Z chamber
- 5 CMD SC solenoid

- 6 electromagnetic calorimeter LXe
- 7 electromagnetic calorimeter CsI
- 8 yoke
- 9 VEPP-2000 solenoid

Physics program at VEPP-2000

- 1. Precise measurement of the quantity $R=\sigma(e+e-->hadrons)/\sigma(e+e-->\mu+\mu-)-GOAL <1\%$ systematic for major channels
- 2. Study of hadronic channels: e+e-- > 2h, 3h, 4h ..., $h=\pi$,K, η
- 3. Study of 'excited' vector mesons: ρ', ρ'', ω' , $\phi',...$
- 4. CVC tests: comparison of e+e-- > hadr. (T=1) cross section with τ -decay spectra
- 5. Study of nucleon-antinucleon pairproduction nucleon electromagneticform factors, search for NNbar resonances,
- 6. Hadron production in 'radiative return' (ISR) processes
- 7. Two photon physics
- 8. Test of the QED high order processes 2->4,5

Method (Kuhn, Czyz?)

Every process of e+e- annihilation into hadrons can be express using diagram:

Common for all processes Depend on the final state

$$M_{fi} \propto J_{el} \quad \mathbf{x} \quad J_{had} \cdot \mathbf{\Phi}$$

To study hadronic final state one have to provide hadronic current

Phase Space ($|M|^2 = 1$) – no model

Phase space "model" could not explain anything (as expected)
Institute for Nuclear Physics of Mainz

Model e⁺e⁻ $\rightarrow \rho(770)4\pi \rightarrow 6\pi$

$${J}_{had} = \sum_{\pi^{^{+}}} \sum_{\pi^{^{-}}} rac{p_{\pi^{^{+}}} - p_{\pi^{^{-}}}}{D_{
ho}(Q_{\pi^{^{+}\pi^{^{-}}}}^2)}$$

$\rho(770)f_0(1370) =$

Model $e^+e^- \to \rho(770)f_2(1270) \to 6\pi$

$$J_{had} = \bigcup_{1,3,5} \bigcup_{2,4,6} j_{123456}$$

$$j_{123456} = \frac{F_{f_2}^2(Q_{4\pi}^2)}{D_{\rho}(Q_{2\pi}^2)D(Q_{4\pi}^2)} \left\langle \left[f^{0\mu}(p_1^{\mu}p_2^i - p_1^i p_2^{\mu}) + f^{i\mu}(E_1 p_2^{\mu} - E_2 p_1^{\mu}) \right] \right\rangle$$

$$f^{ab}\left[p_3^a p_5^b(p_4 p_6) - p_3^a p_6^b(p_4 p_5) + p_4^a p_6^b(p_3 p_5) - p_4^a p_5^b(p_3 p_6)\right]\rangle$$

$M(3\pi)@1.6GeV$

M(4π)@1.6GeV

M(2π)@1.6GeV

 $M(3\pi)@1.8GeV$

 $M(4\pi)@1.8GeV$

M(2π)@1.8GeV

M(3π)@2.0GeV

 $M(4\pi)$ @2.0GeV

 $M(2\pi)@2.0GeV$

Institute for Nuclear Physics of Mainz

Cosine + +,- -

Conclusion

- \clubsuit Using Kuhn, Czyz(?) approach MC generators with more than 10 models of e+e- \to 3(π + π -) production were created.
- ❖ It is shown, that model e+e- → ρ (770)4 π → 3(π + π -) reasonably describes pion masses distributions at energies 2E = 1.6 GeV and 2E = 2.0 GeV, but does not describe the distributions at 2E = 1.8 GeV.
- ❖ It is shown, that models e+e- → ρ (770)f₀(1370) → 3(π + π -) and e+e- → ρ (770)f₂(1270) → 3(π + π -) reasonably describes pion masses distributions at energies 2E = 1.8 GeV, but does not describe the distributions at 2E = 1.6 GeV and 2E = 2.0 GeV.
- ❖ It is shown, that models $e+e-\rightarrow \rho(770)\,f_0(1370)\rightarrow 3\,(\pi+\pi-)$ underestimates angular correlations between pions of the same charges and reasonably discribes angular correlations between pions of opposite charges.
- It is shown, that models e+e- $\rightarrow \rho$ (770) f_2 (1270) \rightarrow 3 (π + π -) overestimates angular correlations between pions of the same charges and reasonably discribes angular correlations between pions of opposite charges.

Plans

- ❖ Tune the models for e+e- →3 $(\pi+\pi-)$ production
- Create the same models for $e+e- \rightarrow 2(\pi+\pi-\pi^0)$ production

Stay tuned! Thank You!