KLOE measurement of $\sigma(e^+e^-\to\pi^+\pi^-(\gamma))$ with Initial State Radiation and the $\pi\pi$ contribution to the muon anomaly #### Graziano Venanzoni (for the KLOE/KLOE-2 collaboration) Laboratori Nazionali di Frascati RMCLWG Meeting, Mainz 27 Sep 2012 ### **Outline** • KLOE measurements of $\sigma(e^+e^- \to \pi^+\pi^-(\gamma))$: - Small (photon) angle measurements (KLOE08) - Large (photon) angle measurement (KLOE10) - Evaluation of a_μ^{ππ} and comparison with CMD-2/SND/BaBar - New measurement of σ(e⁺e⁻ →π⁺π⁻(γ)) by ππγ/μμγ ratio (KLOE12, *final*) - Comparison with KLOE08, KLOE10 and evaluation of $a_{\mu}^{\pi\pi}$ - Outlook and conclusion ### **ISR: Initial State Radiation** Neglecting final state radiation (FSR): Theoretical input: precise calculation of the radiation function H(s, M²_{hadr}) #### **→** EVA + PHOKHARA MC Generator Binner, Kühn, Melnikov; Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003 (exact next-to-leading order QED calculation of the radiator function) IN 2005 KLOE has published the first precision measurement of $\sigma(e^+e^-\to\pi^+\pi^-)$ with ISR using 2001 data (140pb⁻¹) PLB606(2005)12 \Rightarrow ~3 σ discrepancy btw a_u^{SM} and a_u^{exp} ### **DAΦNE:** A Φ-Factory in Frascati (near Rome) e^+e^- - collider with $\sqrt{s}=m_{\Phi}\approx 1.0195$ GeV ### Integrated Luminosity Peak Luminosity $L_{peak} = 1.5 \cdot 10^{32} \text{cm}^{-2} \text{s}^{-1}$ KLOE05 measurement (PLB606 (2005)12) was based on 140pb⁻¹ of 2001 data! KLOE08 measurement (PLB670 (2009)285) was based on 240pb⁻¹ from 2002 data! #### 2006: - Energy scan (4 points around m_Φ-peak) - 240 pb⁻¹ at \sqrt{s} = 1000 MeV (off-peak data) KLOE10 measurement (PLB700 (2011) 102) based on 233 pb⁻¹ of 2006 data (at 1 GeV, different event selection) ## **KLOE Detector** #### **Drift chamber** $\sigma_p/p = 0.4\%$ (for 90° tracks) $\sigma_{xy} \approx 150$ mm, $\sigma_z \approx 2$ mm Excellent momentum resolution Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀ ### **KLOE Detector** #### **Electromagnetic Calorimeter** $\sigma_{\rm E}/{\rm E} = 5.7\% \ / \ \sqrt{\rm E(GeV)}$ $\sigma_{\rm T} = 54 \ {\rm ps} \ / \ \sqrt{\rm E(GeV)} \oplus 100 \ {\rm ps}$ (Bunch length contribution subtracted from constant term) Excellent timing resolution Pb / scintillating fibres (4880 PMT) Endcap - Barrel - Modules ## **Event Selection: Small Angle (SA)** #### Pion tracks at large angles $$50^{\circ} < \theta_{\pi} < 130^{\circ}$$ a) Photons at small angles $$\theta_{v} < 15^{\circ} \text{ or } \theta_{v} > 165^{\circ}$$ → Photon momentum from kinematics: $$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$ - High statistics for ISR photons - Very small contribution from FSR - Reduced background contamination ## **Event Selection: Large Angle (LA)** #### Pion tracks at large angles $$50^{\circ} < \theta_{\pi} < 130^{\circ}$$ ### a) Photons at small angles $$\theta_{v} < 15^{\circ} \text{ or } \theta_{v} > 165^{\circ}$$ ## → Photon momentum from kinematics: $$\vec{p}_{\gamma} = \vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$ - High statistics for ISR photons - Very small contribution from FSR - Reduced background contamination ### b) Photons at large angles $$50^{\circ} < \theta_{v} < 130^{\circ}$$ ## → Photon is explicitly measured in the detector! - Threshold region accessible - Lower signal statistics - Increased contribution from FSR and $\phi \rightarrow \pi^+ \pi^- \pi^0$ (use off peak data) ### **Event Selection** Experimental challenge: control backgrounds from $$-\phi \rightarrow \pi^+\pi^-\pi^0$$ $$-e^+e^- \rightarrow e^+e^- \gamma$$ $$-e^+e^- \rightarrow \mu^+\mu^- \gamma$$ removed using kinematical cuts in $trackmass\ M_{Trk}$ - $M_{\pi\pi}^2$ plane $M_{\textit{Trk}}$: defined by 4-momentum conservation assuming 2 charged particle (of same mass) and one γ in the final state $$\left| \left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2} \right)^2 - (p_1 + p_2)^2 = 0 \right|$$ To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight. ## **Luminosity:** ### KLOE measures L with Bhabha scattering $55^{\circ} < \theta < 125^{\circ}$ acollinearity $< 9^{\circ}$ $p \ge 400 \text{ MeV}$ $$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$ F. Ambrosino et al. (KLOE Coll.) **Eur.Phys.J.C47:589-596,2006** ## generator used for σ_{eff} BABAYAGA (Pavia group): C. M.C. Calame et al., NPB758 (2006) 22 new version (BABAYAGA@NLO) gives 0.7% decrease in cross section, and better accuracy: 0.1% | Systematics on Luminosity | | | |------------------------------------------------------------|-------|--| | Theory | 0.1 % | | | Experiment | 0.3 % | | | TOTAL $0.1 \% \text{ th} \oplus 0.3\% \text{ exp} = 0.3\%$ | | | ## Luminosity: ### KLOE measures L with Bhabha scattering $$55^{\circ} < \theta < 125^{\circ}$$ acollinearity $< 9^{\circ}$ $$p \ge 400 \text{ MeV}$$ $$\int \mathcal{L} \, \mathrm{d}t = \frac{N_{obs} - N_{bkg}}{\sigma_{eff}}$$ ## KLOE08: Small Angle (\sqrt{s} = 1020 MeV) ### Systematic errors on $a_{\mu}^{\pi\pi}$: | Reconstruction Filter | negligible | |--------------------------------------------|------------| | Background | 0.3% | | Trackmass/Miss. Mass | 0.2% | | p/e-ID and TCA | negligible | | Tracking | 0.3% | | Trigger | 0.1% | | Acceptance $(\theta_{\pi\pi})$ | 0.2% | | Acceptance (θ_{π}) | negligible | | Unfolding | negligible | | Software Trigger | 0.1% | | \sqrt{s} dep. Of H | 0.2% | | Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$ | 0.3% | #### experimental fractional error on $a_{\mu} = 0.6 \%$ | FSR treatment | 0.3% | | |---------------------|------|--| | Radiator H | 0.5% | | | Vacuum polarization | 0.1% | | #### theoretical fractional error on $a_{\mu} = 0.6 \%$ $$a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$$ $$a_{\mu}^{\pi\pi}(0.35\text{-}0.95\text{GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.3_{\text{theo}}) \cdot 10^{-10}$$ $\sigma_{\pi\pi}$, undressed from VP, inclusive for FSR as function of $(M_{\pi\pi}^0)^2$ ## KLOE10: Large Angle (\sqrt{s} = 1000 MeV) Phys. Lett. B 700 (2011) 102 Table of systematic errors on $a_{..}^{\pi\pi}(0.1-0.85 \text{ GeV}^2)$: | | <u>αμ</u> (στι στοσ σστ). | |--------------------------------------------|----------------------------| | Reconstruction Filter | negligible | | Background | 0.5% | | $f_0+\rho\pi$ | 0.4% | | Ω cut | 0.2% | | Trackmass | 0.5% | | p/e-ID and TCA | negligible | | Tracking | 0.3% | | Trigger | 0.2% | | Acceptance | 0.5% | | Unfolding | negligible | | Software Trigger | 0.1% | | Luminosity $(0.1_{th} \oplus 0.3_{exp})\%$ | 0.3% | #### experimental fractional error on $a_u = 1.0 \%$ | FSR treatment | 0.8% | |---------------------|------| | Radiator H | 0.5% | | Vacuum polarization | 0.1% | theoretical fractional error on $a_u = 0.9 \%$ $$a_{\mu}^{\pi\pi} = \int_{x_1}^{x_2} \sigma_{ee \to \pi\pi}(s) K(s) ds$$ $$a_{\mu}^{\pi\pi}(0.1\text{-}0.85~\text{GeV}^2) = (478.5 \pm 2.0_{\text{stat}} \pm 5.0_{\text{sys}} \pm 4.5_{\text{theo}}) \cdot 10^{-10}$$ 0.4% 1.0% 0.9% ### Comparison of results: KLOE10 vs KLOE08 #### KLOE08 result compared to KLOE10: #### Fractional difference: Excellent agreement with KLOE08, expecially above 0.5 GeV² Combination of KLOE08 and KLOE10: $a_{\mu}^{\pi\pi}(0.1\text{-}0.95 \text{ GeV}^2) = (488.6\pm6.0) \cdot 10^{-10}$ KLOE covers ~70% of total a_u^{HLO} with a fractional total error of 1.2% ### Comparison of results: KLOE10 vs CMD-2/SND #### CMD and SND results compared to KLOE10: Fractional difference band: KLOE10 error Below the ρ peak good agreement with CMD-2/SND. Above the ρ peak KLOE10 slightly lower (as KLOE08) ### Comparison of results: KLOE10 vs BaBar #### BaBar results compared to KLOE10: Fractional difference band: KLOE10 error Agreement within errors below 0.6 GeV; BaBar higher by 2-3% above ## New $\sigma_{\pi\pi}$ measurement from π/μ An alternative way to obtain $|F_{\pi}|^2$ is the bin-by-bin ratio of pion over muon yields (instead of using absolute normalization with Bhabhas). $$\left|F_{\pi}(s')\right|^{2} \approx \frac{4\left(1+2m_{\mu}^{2}/s'\right)\beta_{\mu}}{\beta_{\pi}^{3}} \quad \frac{d\sigma_{\pi\pi\gamma}/ds'}{d\sigma_{\mu\mu\gamma}/ds'}$$ kinematical factor meas. $$(s_{mm}^{Born}/s_{pp}^{Born}) \quad \text{quantities}$$ Many radiative corrections drop out: - radiator function - int. luminosity from Bhabhas - Vacuum polarization Separation btw $\pi\pi\gamma$ and $\mu\mu\gamma$ using M_{TRK} - muons: $M_{Trk} < 115 MeV$ - pions : $M_{Trk} > 130 \, MeV$ Very important control of π/μ separation in the ρ region! $(\sigma_{\pi\pi} >> \sigma_{uu})$ ### KLOE12: analysis of ππγ/μμγ - \square 239.2 pb⁻¹ of 2002 data sample (the same used in KLOE08 analysis), with photon at small angle : 0.87 Million μμγ events (compared to 3.4 Million for $\pi\pi\gamma$) - □Careful work to achieve a control of ~1% in the muon selection, especially in the ρ region where $\pi\pi\gamma/\mu\mu\gamma$ ~10. π/μ separation crosschecked in three different methods (M_{TRK} fit, Kinematic fit, cut on σ_{MTRK}) - \square μμγ (and π πγ) Efficiencies (Trk,Trg,PID) done on data - \square Excellent data/MC agreement for many kinematic variables: M_{TRK} , track and γ polar angle, etc... ## Background: Main backgrounds estimated from MC shapes fitted to data distribution in M_{Trk} - Systematic error on $\mu\mu\gamma$ due to background~1% in the ρ peak ## π/μ separation: control of ππγ M_{TRK} tail - \square A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV² (ρ peak) where π/μ ~10. - □ ππγ % background to μμγ signal (M_{TRK}<115 MeV) is ~10% → ππγ M_{TRK} tail in the μμγ region must be well under control. - □ππγ M_{TRK} tail tuned using $φ→π^+π^-π^0$ control sample. - **□**Excellent agreement on M_{TRK} (ππγ and μμγ) distributions ## π/μ separation: control of $\pi\pi\gamma$ M_{TRK} tail - \square A careful work has been done to achieve a control of ~1% in the muon selection, especially ~0.6 GeV² (ρ peak) where π/μ ~10. - \square ππγ % background to μμγ signal (M_{TRK}<115 MeV) is ~10% \Rightarrow ππγ M_{TRK} tail in the μμγ region must be well under control. - □ππγ M_{TRK} tail tuned using $\phi \rightarrow \pi^+\pi^-\pi^0$ control sample. - **□**Excellent agreement on M_{TRK} (ππγ and μμγ) distributions ### Cross check of π/μ separation S S KLOK The π/μ separation has been crosschecked with two different (and independent) methods: (and independent) methods: \square A kinematic fit, in the hypothesis of 2 body+1 γ (ISR) events. \Box A cut on the quality of the fitted tracks, parametrized by σ_{MTRK} \square π/μ separation obtained with these methods well in agreement with the standard one. ### Results of σ_{MTRK} and KF cross checks π/μ separation obtained with these methods well in agreement with the standard one •The ratio of the muon yields from kinematic fit method with $\chi 2\mu\mu < 10$ to the muon yields from standard method, fitted with the constant. Yellow bar the systematic error of the kinematic fit method • Black dots are the difference of $\mu+\mu-\gamma$ yields obtained with std and σ_{MTRK} methods; Red line is the total systematic error of the difference. ### μμγ cross section: data/MC comparison $$\frac{d\sigma^{obs}_{\mu\mu\gamma(\gamma)}}{dM^{2}_{\mu\mu}} = \frac{\Delta N_{\text{Obs}} - \Delta N_{\text{Bkg}}}{\Delta M^{2}_{\mu\mu}} \cdot \frac{1}{\varepsilon_{\text{Sel}}} \cdot \frac{1}{\int Ldt}$$ $$\frac{d\sigma^{DATA}_{\mu\nu\gamma(\gamma)}}{d\sigma^{MC}_{\mu\nu\gamma(\gamma)}} = 0.998 \pm 0.001_{\text{stat}} \pm 0.011_{\text{sys}}$$ •The systematic error has been averaged on M2 $\mu\mu$ •Good agreement with PHOKHARA MC (NLO Calculation) $$\frac{d\sigma^{DATA}_{\mu\nu\gamma(\gamma)}}{d\sigma^{MC}} = \frac{\Delta N_{\text{Obs}} - \Delta N_{\text{Bkg}}}{\Delta M^{2}_{\mu\mu}} \cdot \frac{1}{\varepsilon_{\text{Sel}}} \cdot \frac{1}{\int Ldt}$$ • $\frac{1}{1.075}$ •Consistency check of Radiator function, Luminosity, etc... $M_{\mu\mu}^2({ m MeV})$ ### KLOE12 result on $|F_{\pi}|^2$ and comp. with KLOE08 #### KLOE08 KLOE12 | | 112 0 2 0 | 1120212 | | |--------------------------------|--------------------------------------|--------------------------------------------------------|--| | Syst. errors (%) | $\Delta^{\pi\pi}a_{\mu}$ abs | $\Delta^{\pi\pi}a_{\mu}$ ratio | | | Reconstruction Filter | negligible | negligible | | | Background subtraction | 0.3 | $0.8~(0.3_{\pi\pi\gamma}\oplus 0.8_{\mu\mu\gamma})$ | | | Trackmass | 0.2 | $0.4 \ (0.2_{\pi\pi\gamma} \oplus 0.4_{\mu\mu\gamma})$ | | | Particle ID | negligible | negligible | | | Tracking | 0.3 | $0.6~(0.3_{\pi\pi\gamma}\oplus 0.5_{\mu\mu\gamma})$ | | | Trigger | 0.1 | $0.1 \ (0.1_{\pi\pi\gamma})$ | | | Unfolding | negligible | negligible | | | Acceptance $(\theta_{\pi\pi})$ | 0.2 | negligible | | | Acceptance (θ_{π}) | negligible | negligible | | | Software Trigger (L3) | 0.1 | $0.1 \ (0.1_{\pi\pi\gamma} \oplus 0.1_{\mu\mu\gamma})$ | | | Luminosity | $0.3 \; (0.1_{th} \oplus 0.3_{exp})$ | - | | | \sqrt{s} dep. of H | 0.2 | - | | | Total exp systematics | 0.6 | 1.1 | | | Vacuum Polarization | 0.1 | - | | | FSR treatment | 0.3 | 0.3 | | | Rad. function H | 0.5 | | | | Total theory systematics | 0.6 | 0.3 | | | Total systematic error | 0.9 | 1.2 | | - •Good agreement btw the two measurements, especially in the ρ region. - •Combination of systematic errors btw KLOE08 and KLOE12 in progress KLOE12: $a_{\mu}^{\pi\pi}(0.35\text{-}0.95~\text{GeV}^2) = (385.1 \pm 1.1_{\text{stat}} \pm 4.4_{\text{sys}} \pm 1.2_{\text{theo}}) \cdot 10^{-10}$ KLOE08: $a_{\mu}^{\pi\pi}(0.35\text{-}0.95 \text{ GeV}^2) = (387.2 \pm 0.5_{\text{stat}} \pm 2.4_{\text{sys}} \pm 2.3_{\text{theo}}) \cdot 10^{-10}$ ### Comparison of results: KLOE12 vs KLOE10 •KLOE12 result compared to KLOE10: #### •Fractional difference: •band: KLOE10 error •Excellent agreement in the whole range between the two measurements. | Analysis | $a_{\mu}^{\pi\pi}(0.35 - 0.85 \text{ GeV}^2) \times 10^{10}$ | |----------|--------------------------------------------------------------| | KLOE12 | $377.4 \pm 1.1_{\rm stat} \pm 4.5_{\rm sys+theo}$ | | KLOE10 | $376.6 \pm 0.9_{\rm stat} \pm 3.3_{\rm sys+theo}$ | ## $a_{\mu} = (g_{\mu} - 2)/2$: - Theoretical predictions compared to the BNL result - •The latest inclusion of all e+edata gives a a_{μ}^{SM} and a_{μ}^{EXP} discrepancy of about 3 σ - •KLOE12 in agreement with previous KLOE measurements confirms this discrepancy. - •Very important the new g-2 experiments (at FNAL and JPARC). - •* The green triangle in figure is our preliminary estimate based on DHMYZ10 to show the impact of the new measurement (normalized to $\mu\mu\gamma$) on a μ , and it has not to be considered as a new theoretical estimate. ### Conclusion - •During the last 10 years KLOE has performed several precision measurements with ISR which confirmed a 3σ discrepancy between a_{μ}^{SM} and the BNL measured value and allowed the measurement of $a_{\mu}^{\pi\pi}$ in the region 0.1-0.95 GeV² (70% of a_{μ}^{HLO}) with 1.2% total error using KLOE data only. - •A new measurement of $|F_{\pi}|^2$ from the $\pi\pi\gamma/\mu\mu\gamma$ ratio (based on 240 pb-1) with 1.1% experimental systematic error has been done. The results show good agreement for $\mu\mu\gamma$ cross section with PHOKHARA MC and for $|F_{\pi}|^2$ and $a_{\mu}^{\pi\pi}$ with previous KLOE published measurements. - $a_{\mu}^{\pi\pi}$ from $\pi\pi\gamma/\mu\mu\gamma$ ratio **confirms** the 3 σ discrepancy between the theoretical and the experimental value of a μ - •Still more than 1.5 fb-1 of KLOE data on tape. This is a ~4 improvement in statistics respect to the published measurements. - •The present result on the analysis of $\pi\pi\gamma/\mu\mu\gamma$ will be submitted for publication very soon. ### SPARE SLIDES # Example of data/MC comparison for $\mu\mu\gamma$ and $\pi\pi\gamma$: momentum components of μ and π ## μ Tracking efficiency Since for muons we don't have an control sample (like 3π for pions), we have refiltered M_{MISS} all 2002 data set (240 pb⁻¹) according to: (MeV) - 1) a "good" tagging track extrapolating back to the IP, which satisfies the trigger associated to a cluster with LogrL>0, 1 and MLP>0.7 - 1 neutral prompt clusters not associated to the tagging track with E>50 MeV. A constraint on the photon energy and time to further clean the sample, and improve missing momentum and energy - The tagging track must have p > 450 MeV (to reject $\pi^+\pi^-\pi^0$ events), the *candidate* track must have mass (built from 4 momentum conservation) 50 < M_{miss} < 130 MeV ### Efficiencies for μμγ - \Box The efficiencies of μμγ (and ππγ) for trigger, tracking, and PID have been carefully studied with data, using the single particle method and taking into account the kinematics by MC. - Differently from ππγ, where the 3π sample was used to get the data/MC corrections, for μμγ there is no a direct control sample and we had used mmg itslef with lose selection criteria. - □All the efficiencies has been found to be above 96% with ~1% data/MC correction as maximum. ### **ISR:** Initial State Radiation Particle factories (DAFNE, PEP-II, KEK-B) can measure hadronic cross sections as a function of the hadronic c.m. energy using initial state radiation (radiative return to energies below the collider energy \sqrt{s}). The emission of a hard g in the bremsstrahlung process in the initial state reduces the energy available to produce the hadronic system in the e⁺e⁻ collision. ## Extracting $\sigma_{\pi\pi}$ and $|F_{\pi}|^2$ from $\pi\pi\gamma$ events #### a) Via absolute Normalisation to Bhabha events (KLOE05,08,10): 1) $$\frac{d\sigma_{_{\pi\pi\gamma(\gamma)}}^{obs}}{dM_{_{\pi\pi}}^{2}} = \frac{\Delta N_{\rm Obs} - \Delta N_{\rm Bkg}}{\Delta M_{_{\pi\pi}}^{2}} \cdot \frac{1}{\varepsilon_{\rm Sel}} \cdot \frac{1}{\int L dt}$$ $d\sigma_{\pi\pi\gamma(\gamma)}/dM^2$ is obtained by subtracting background from observed event spectrum, divide by selection efficiencies, and *int. luminosity*: 2) $$\sigma_{\pi\pi}(s) \approx s \frac{d\sigma^{obs}}{dM_{\pi\pi}^2} \cdot \frac{1}{H(s)}$$ Obtain $\sigma_{\pi\pi}$ from (ISR) - radiative cross section $ds_{\pi\pi\gamma(\gamma)}/dM^2$ via theoretical radiator function H(s): 3) $$\left| \left| F_{\pi} \right|^{2} = \frac{3s}{\pi \alpha^{2} \beta_{\pi}^{3}} \sigma_{\pi\pi}(s) \right|$$ Relation between $|F_{\pi}|^2$ and the cross section $\sigma(e^+e^- \to \pi^+\pi^-)$ b) Via bin-by-bin Normalisation to rad. Muon events (New measurement!) ### **Radiative Corrections** ### Radiator-Function H(s,s_p) (ISR): - ISR-Process calculated at NLO-level PHOKHARA generator (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC27,2003) Precision: 0.5% $$s \cdot \frac{d\sigma_{\pi\pi\gamma}}{ds_{\pi}} = \sigma_{\pi\pi}(s_{\pi}) \times H(s, s_{\pi})$$ #### **Radiative Corrections:** - i) Bare Cross Section divide by Vacuum Polarisation $d(s)=(a(s)/a(0))^2$ - → from F. Jegerlehner - ii) FSR Cross section s_{pp} must be incl. for FSR for use in the dispersion integral of a_{m} FSR corrections have to be taken into account in the efficiency eval. (Acceptance, M_{Trk}) and in the mapping $s_{\pi} \rightarrow s_{\gamma*}$ (H.Czyż, A.Grzelińska, J.H.Kühn, G.Rodrigo, EPJC33,2004) ## **SA Event Selection (KLOE08)** - a) 2 tracks with 50° < θ_{track} < 130° - b) small angle (not detected) γ ($\theta_{\pi\pi} < 15^{\circ}$ or $> 165^{\circ}$) - √ high statistics for ISR - ✓ low relative FSR contribution - $_{\star 10^{\,2}}$ \checkmark suppressed $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$ wrt the signal kinematics: $\vec{p}_{\gamma} = \vec{p}_{miss} = -(\vec{p}_{+} + \vec{p}_{-})$ statistics: 240pb⁻¹ of 2002 data 3.1 Mill. Events between 0.35 and 0.95 GeV² ## LA Event Selection (KLOE10) ### 2 pion tracks at large angles $$50^{\circ} < \theta_{p} < 130^{\circ}$$ Photons at large angles $$50^{\circ} < \theta_{\gamma} < 130^{\circ}$$ - √ independent complementary analysis - √ threshold region (2m_π)² accessible - $\sqrt{\gamma_{ISR}}$ photon detected (4-momentum constraints) - √ lower signal statistics - ✓ larger contribution from FSR events - ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination - √ irreducible background from ϕ decays $(\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma)$ At least 1 photon with $50^{\circ} < \theta_{\alpha} < 130^{\circ}$ and E_a > 20 MeV → photon detected #### Threshold region non-trivial due to irreducible FSR-effects, which have to be estimated from MC using phenomenological models (interference effects unknown) ## LA Event Selection (KLOE10) #### 2 pion tracks at large angles $50^{\circ} < \theta_{\rm p} < 130^{\circ}$ Photons at large angles 50° < θ_y < 130° - √ independent complementary analysis - √ threshold region (2m_π)² accessible - √ YISR photon detected (4-momentum constraints) - √ lower signal statistics - ✓ larger contribution from FSR events - ✓ larger $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination - √ irreducible background from ϕ decays ($\phi \rightarrow f_0 \gamma \rightarrow \pi\pi \gamma$) At least 1 photon with $50^{\circ} < \theta_{g} < 130^{\circ}$ and E_a > 20 MeV → photon detected Use data sample taken at √s≅1000 MeV. 20 MeV below the f-peak ### Comparison of results: KLOE10 vs CMD-2/SND CMD and SND results compared to KLOE10: ## Final State Radiation (FSR) The presence of not factorizable diagrams (like the 2 photon exchange) not present in Phokhara could lead to deviaton respect to: $$\sigma_{\pi\pi}^{0} = \frac{4\pi\alpha^{2}}{3s'}(1 + 2m_{\mu}^{2}/s')\beta_{\mu}\frac{\left(d\sigma_{\pi\pi\gamma}^{ISR+FSR}(\theta_{\Sigma}^{\pi\pi} < 15^{o})/ds'\right)}{\left(d\sigma_{\mu\nu\gamma}^{ISR}(\theta_{\Sigma}^{\mu\mu} < 15^{o})/ds'\right)} \cdot Corr(\theta_{\Sigma}^{I+FSR}/\theta_{\Sigma}^{ISR})$$ - For the $\pi\pi\gamma$ this has been tested in our previous publication and a validity within 0.2% was found (for pointlike pions) - •For $\mu\mu\gamma$, we can assume the same 0.2% as conservative estimate of this missing contribution in the passage from I+FSR to ISR (in our small angle region) We take the combined error of 0.3% for the uncertainty on the rel. FSR contribution ## List of systematic errors ### SA | | $\sigma_{\mu\mu\gamma}$ | $\sigma_{\pi\pi\gamma}$ (Ref. [4]) | $\sigma_{\pi\pi}^{bare}$ ratio | $ F_{\pi} ^2$ ratio | |----------------------|-------------------------|------------------------------------|--------------------------------|---------------------| | L3 | 0.1 % | | | | | FILFO | negligible | | | | | Bckg subtr. | M^2 dep. (Tab. 2) | M^2 dep. (Tab. 3) | M^2 dep. (Tab. 4) 0.4 % | | | $M_{ m TRK}$ | 0.4 % | 0.2% | | | | PID | negligible | | | | | Tracking | M^2 dep. (Tab. 8) | 0.3% | Tab. 9 | | | Trigger | negligible | e 0.1% | | | | Unfolding | negligible | M^2 dep. (Tab. 3 of [4]) | | | | Acceptance | M^2 dep. (Tab. 10) | M^2 dep. (Tab. 2 of [4]) | M^2 dep. (Tab. 11) | | | Luminosity | 0.3% | | - | | | FSR | negligible 0.3% | | 0.3% | 0.3% | | Rad. H | | - | | | | \sqrt{s} dep. of H | | - | | | | Vac. Pol. | | - | | 0.1% ([25]) | Table 12: List of systematic uncertainties for $\sigma_{\mu\mu\gamma}$, $\sigma_{\pi\pi\gamma}$ from SA analysis [4], $\sigma_{\pi\pi}$ (bare) and $|F_{\pi}|^2$ from the ratio. ### **Event selection** Experimental challenge: Fight background from $$- e^{+}e^{-} \rightarrow \mu^{+}\mu^{-} \gamma,$$ $$- e^{+}e^{-} \rightarrow e^{+}e^{-} \gamma$$ $$- \phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$$ separated by means of kinematical cuts in *trackmass* M_{Trk} and the angle Ω between the photon and the missing momentum $$\vec{p}_{\text{miss}} = -(\vec{p}_+ + \vec{p}_-)$$ To further clean the samples from radiative Bhabha events, a particle ID estimator for each charged track based on Calorimeter Information and Time-of-Flight is used. ### **Event Selection** Experimental challenge: control backgrounds from $$-\phi \rightarrow \pi^+\pi^-\pi^0$$ $$-e^+e^- \rightarrow e^+e^- \gamma$$ $$-e^+e^- \rightarrow \mu^+\mu^- \gamma$$ removed using kinematical cuts in $trackmass\ M_{Trk}$ - $M_{\pi\pi}^2$ plane M_{Trk} : defined by 4-momentum conservation assuming 2 charged particle (of same mass) $$\left[\left(\sqrt{s} - \sqrt{p_1^2 + M_{trk}^2} - \sqrt{p_2^2 + M_{trk}^2} \right)^2 - (p_1 + p_2)^2 = 0 \right]$$ and one γ in the final state To further clean the samples from radiative Bhabha events, we use a particle ID estimator (PID) for each charged track based on Calorimeter Information and Time-of-Flight. ## μ Tracking efficiency Since for muons we don't have an control sample (like 3π for pions), we have refiltered M_{MISS} all 2002 data set (240 pb⁻¹) according to: (MeV) - 1) a "good" tagging track extrapolating back to the IP, which satisfies the trigger associated to a cluster with LogrL>0, 1 and MLP>0.7 - 1 neutral prompt clusters not associated to the tagging track with E>50 MeV. A constraint on the photon energy and time to further clean the sample, and improve missing momentum and energy - The tagging track must have p > 450 MeV (to reject $\pi^+\pi^-\pi^0$ events), the *candidate* track must have mass (built from 4 momentum conservation) 50 < M_{miss} < 130 MeV ## Extracting $|F_{\pi}|^2$ by π/μ ratio: In the ratio the correction for acceptance is ~1% (instead of 30% for the absolute measurement) $$|F_{\pi}(s')|^{2} \cdot (1 + \eta(s')) = \frac{4(1 + 2m_{\mu}^{2}/s')\beta_{\mu}}{\beta_{\pi}^{3}} \cdot \frac{\left(d\sigma_{\pi\pi\gamma}^{ISR+FSR}(\theta_{\Sigma}^{\pi\pi} < 15^{o})/ds'\right)}{\left(d\sigma_{\mu\mu\gamma}^{ISR}(\theta_{\Sigma}^{\mu\mu} < 15^{o})/ds'\right)} \cdot Corr(\theta_{\Sigma}^{I+FSR}/\theta_{\Sigma}^{ISR})$$ $$\cdot \frac{\left(d\sigma_{\pi\pi\gamma}^{ISR+FSR}(\theta_{\Sigma}^{\pi\pi}<15^{o})/ds'\right)}{\left(d\sigma_{\mu\mu\gamma}^{ISR}(\theta_{\Sigma}^{\mu\mu}<15^{o})/ds'\right)}.$$ $$Corr(\theta_{\Sigma}^{I+FSR}/\theta_{\Sigma}^{ISR})$$