Analog info for SVT hits

- Analog info on pulse height is useful in SVT:
 - to improve spatial resolution w.r.t digital response
 - to correct timewalk and improve time resolution on SVT hits
 - to measure the dE/dx for low momentum tracks (high energy deposition --> high dynamic range required 10-15 MIP)
 - Other less critical motivations

Time over threshold (TOT)

- Assume shaping CR-RC² (as in the ATOM chips) with τ_p varying from 25 ns (L0) to ~1 us (L4-5).
- Which TOT clock period is needed?
 - The ratio τ_p/T_{TOT} will affect the spatial resolution and the SVT hit time resolution
- How many TOT bits do we need?
 - This determines the dynamic range with a given TOT clock
 - For pulse height of 10 MIPs TOT= $4.5\tau_p$

 $T_{TOT} \cdot 2^N = TOT_{MAX}$

• Assume no saturation and theoretical TOT response!

Which time over threshold (TOT) clock? Spatial resolution

- From studies performed for BaBar TDR (BaBar Note-161):
 - Spatial resolution depend on the ratio between the shaping time τ_p and the TOT clock_period: τ_p/T_{TOT}
 - The gre.ater is the ratio the more closely the timeover-threshold method should resemble a perfect analog readout.
 - With $\tau_p/T_{TOT}=1$ the resolution is already fairly good and there is a 20% improvement having this ratio =10. In Babar was = 3 in all layers. (skip control set T_TOT/T_TS)
- Lower limit on TOT clock frequency imposed from spatial resolution= $1/\tau_p$
 - $f_{TOT} = \frac{1}{T_{TOT}} \ge \frac{1}{\tau_P}$

- Huge variations among layers
- L0=25 ns L1-3=50-200 ns, L4-5=300-1us shaping

Which time over threshold (TOT) clock? Dynamic Range (dE/dx)

- If we want to have a dinamic range of 10 MIPs (probably ok for dE/dx) the max TOT ~ 4.5 τ_p $TOT_{MAX} = \frac{4.5\tau_P}{4.5\tau_P} < 2^N$
- With N bit the max value of TOT is 2^{N}
- TOT with N bits, with a given dynamic rage, imposes an upper limit on TOT clock freq.

layer	tau p ns	Min TOT freq MHz (1/taup from spatial resolution)	N bit	Max TOT/taup for 10 MIP	F TOT MHz sugge sted from BaBar	
0	25	40	4	4.5	120	
1	75	13.3	4	4.5	40	
2	100	10	4	4.5	30	
3	150	6.7	4	4.5	20	
4	375	2.7	4	4.5	8	
5	750	1.4	4	4.5	4	
G.	Rizzo				March,	18 2011

 T_{TOT}

 T_{TOT}

- BaBar experience: F_TOT=3×1/ tau_peek in all layers.
- This ratio is ok for resolution and dynamic range with 4 bits.
- In SuperB
- LayerO TOT could be also 60 MHz (no dE/dx)
 - Is that ok for time walk correction?
 - yes from latest time resolution simulation

Which time over threshold (TOT) clock? Time resolution

From latest time resolution simulation (Ratti July 2012)

10

Which time over threshold (TOT) clock? Conclusions

- 1. A fast TOT clock is better for spatial resolution and time resolution
 - $f_{TOT}=1 \times f_{T_p}$ is the minimum allowed for good spatial resolution
 - $f_{TOT}=2xf_{T_p}$ is the minimum allowed for good time resolution
- 2. A slow TOT clock is better for dynamic range
 - With 4 bits $f_{TOT}=3 \times f_{T_p}$ is the maximum allowed to get 10-15 MIPs as in BaBar.
 - A TOT clock in the range between 2-3 x f_ τ_p should be used

layer	tau p ns	(1/taup) MHz	N bit	Min TOT freq MHz (2x1/ taup ok for time resolution	Max TOT freq MHz (ok for dynamic range) suggested from BaBar
0	25	40	4	80	120
1	75	13	4	27	40
2	100	10	4	20	30
3	150	7	4	13	20
4	375	3	4	5	8
5	750	1	4	3	4