Luminosity detector at the International Linear Collider: Monte Carlo simulations and test beam preparation

Jonathan Aguilar Dr hab. inż. Marek Idzik¹ Dr Bogdan Pawlik²

AGH University of Science and Technology

Henryk Niewodniczanski Institute of Nuclear Physics - Polish Academy of Sciences

September 20-22, 2012

About me

Personal background

- Home country: USA
- Education:
 - Harvard University, BA 2008
 - K. A. Brown et al., Coaxial atomic force microscope tweezers. Applied Physics Letters 96, 123109

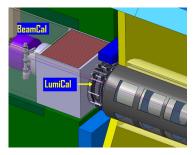
MC-PAD

- ESR
 - AGH University of Science and Technology, Krakow, Poland
 - Polish Academy of Science Inst. for Nuclear Physics (IFJ-PAN)
 - Supervisors: Marek Idzik (AGH) and Bogdan Pawlik (IFJ)
 - Partners with DESY-Zeuthen under P6
- Personal goal: gain research experience and apply to PhD programs

Forward calorimetry at the ILC

LumiCal goals

High precision in $\Delta \mathcal{L}/\mathcal{L}$


Bhabha scattering: $e^+e^- \rightarrow e^+e^-$

■
$$10^{-3}$$
 ($\sqrt{s} = 500$ GeV)

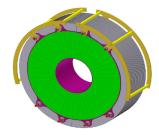
■ 10⁻⁴ (GIGA-Z)

BeamCal goals

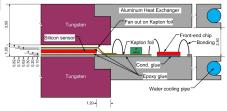
- Fast luminosity estimation (using beamstrahlung)
- Assist beam tuning
- Good hermeticity

ILD forward region

Challenges


- LumiCal: Mechanical precision and position monitoring
- BeamCal: Radiation hardness
- Both: Fast front-end electronics

LumiCal introduction


Parameters	
Туре	Si-W
# layers	30
Absorber Δz	1 X ₀
Si ∆z	300 μ m
Layer rotation offset	3.75 [°]
Inner radius	32.0 mrad
Outer radius	77.9 mm
Distance from IP	2.5 m
Silicon sensor half plane	
24 sectors	64 pads

80,00 | 1,8-

195.20

(top) CAD drawing of LumiCal (bottom) Partial side-on view

J. Aguilar (AGH and IFJ-PAN)

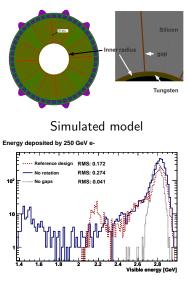
Simulation introduction

Stand-alone model

- Dependent only on Geant4 and ROOT
- Identical geometry to integrated model
- Portable moved to local cluster computing facility which does not have the ILC software packages available

Simulation parameters

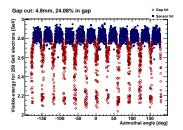
- Single e-
- φ ∈ [0, 2π]
- *θ* ∈ [0.033, 0.073]
- Energies [GeV]: 5, 25, 50, 100, 150, 200, 250, 500
- 4000 events/energy


Tile gap effect

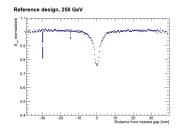
Energy resolution analysis

Accuracy of reconstructed energy: $RMS(E_{rec})/< E_{rec} >$ Can be parametrized as:

$$\frac{RMS}{E_{beam}} = \sqrt{\frac{a^2}{E} + b^2}$$

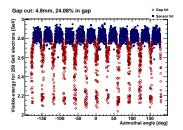

- \blacksquare a \rightarrow stochastic contribution
- b → systematic (geometric) contribution

Energy deposition in the gaps

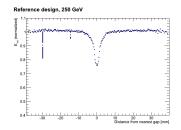

6 / 24

Gap-cutting

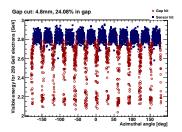
Remove particles in red; cut width can be varied


Gap-fitting

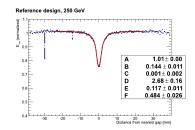
Hits projected onto one tile


$$f(x) = A - \frac{B}{1 + \left(\frac{x - C}{D}\right)^2} - E \cdot e^{-F \cdot x^2}$$

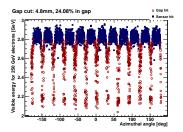
Gap-cutting


Remove particles in red; cut width can be varied

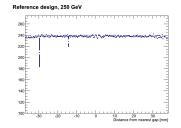
Gap-fitting


Hits projected onto one tile

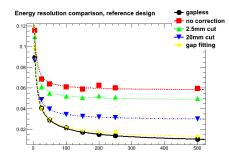
Gap-cutting


Remove particles in red; cut width can be varied

Gap-fitting


Hits projected onto one tile, with fitting

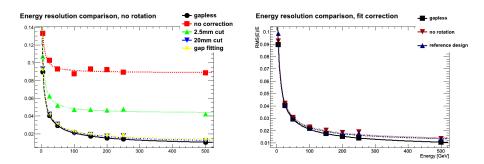
Gap-cutting


Remove particles in red; cut width can be varied

Gap-fitting

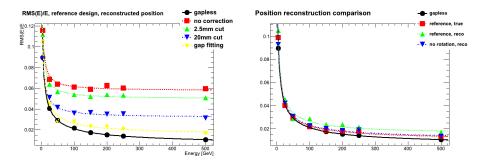
Hits projected onto one tile, flattened and scaled

Correction comparison


Comparison of different cut widths (width on *each* side of the gap) with the gap-fitting and ideal gap-less calorimeter cases.

$$\frac{RMS_E}{E} = \sqrt{\frac{a^2}{E} + b^2}$$

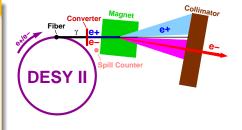
Stochastic	Value	Error
No correction	0.2147	0.0032
2.5mm cut	0.2094	0.0029
20mm cut	0.1865	0.0025
gap-fitting	0.2006	0.0014
gapless	0.2027	0.0013
Geometric	Value	Error
No correction	0.058	0.029
2.5mm cut	0.048	0.024
20mm cut	0.029	0.015
gap-fitting	0.010	0.005
gapless	0.006	0.003


No rotation

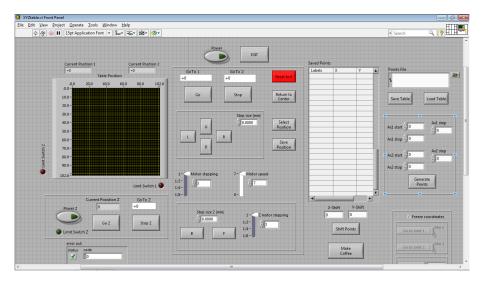
- Rotate LumiCal layers so that tile gaps are aligned
- Accept energy losses in the gaps and try to compensate mathematically

Position reconstruction

- Depends on knowing position of particle
- Previos plots: particle position known from software
- What if we reconstruct the position using only detector information?


Test beam introduction

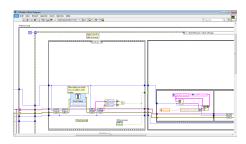
Test beams


DESY-Hamburg BeamCal and LumiCal groups

Goals

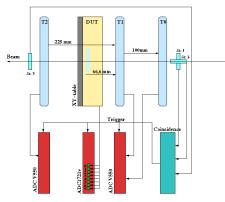
- Characterize readout chain (sensor - fanout - FE ASICs further readout)
- Measure SNR, CCE (GaAs)
- Check sensor perfomance as a function of position
- Investigate edge effects in GaAs sensors

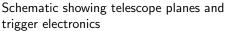
Motorized Position Control Interface



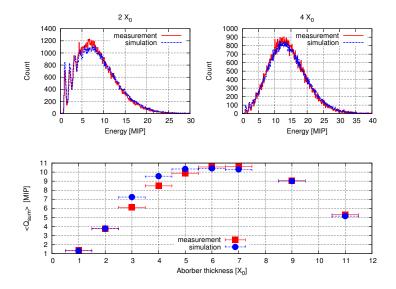
Program design

t


- Event-driven design conserves CPU usage.
- Three ways to set position:
 - Input manually
 - Step manually
 - Generated automatically
- Positions can be labeled and stored for later use.
 - User can set axis motion limits to prevent crashing.
 - Motor speed and step size control for high precision motion (up to 0.31 μm).


- Current maximum vertical load should be up to 6 kg.
- User manual and programming manual available.

Test beams


Setup

Photograph of BeamCal sensors in place and LumiCal sensors behind telescope

Test beam simulations and measurements

Other activities

- Capacitance measurements for fanout (later replaced by test beam measurements)
- 3-D version of SensorMeas
- MSc thesis: "Luminosity detector at the International Linear Collider: Monte Carlo simulations and analysis of test beam data"
- Various internal publications
- TIPP proceedings (Physics Procedia): "Luminometer for the future International Linear Collider - simulation and beam test results"
- Co-editor of FCAL 2009 PRC report

Summary

Simulations

- Realistic LumiCal model implemented and simulated
- Tile gap effect understood and calculated
- "No-rotation" geometry produces good results, but must be investigated further

Test beam

- Simulation of the test beam good in general, but needs to be refined
- X-Y table software implemented and improved over succesive test beams
- (Backup slides) Good SNR (~18)
- (Backup slides) Low crosstalk even from longest fanout channels
- First tests of readout chain sensors with FE ASICs were successful!

Acknowledgments

- Marek Idzik and Bogdan Pawlik
- Wolfgang Lohmann and Olga Novgorodova
- Christan Joram and Veronique Wedlake
- MC-PAD training event organizers
- FCAL members, especially Szymon Kulis, Itamar Levy, Hans Henschel, and Andre Sailer

MC-PAD Reflection

Practical

- Understanding of many detector systems
- Great exposure to other scientists and labs, give talks and posters
- Career workshop very helpful in preparing applications
- Paid for my tuition at AGH
- Now I have an MSc from one of the top technical schools in Poland
- Fellowships like to give fellowships to people with fellowships

PhD application success

- 5/14 acceptances (now at Johns Hopkins University)
- 4 top-25 (US) institutions
- 3/5 acceptances came with an "internal" fellowship
- 1 outside fellowship (National Physical Science Consortium)

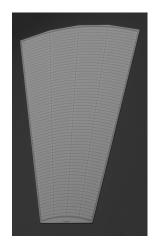
MC-PAD Reflection

Personal

- My research supervisors were great
- Enjoyed being part of collaboration
- More mature researcher
- Opportunity to travel, experience something new now I speak (almost) Polish

Suggestions

- Longer training events maybe even an MC-PAD summer school?
- Maybe organize sessions where we present problems in our research, instead of results?


Backup

Backup slides

Lumical sensor description

Sensor design

- Custom Hamamatsu sensors
- 1 tile (4 sectors)
- 64 pads/sector (1.8mm radial pitch)
- 300 μm high-resistivity n-type Si bulk
- p+ pads with AI metalization, DC coupled
- Capacitance \sim 30pF at 50V

Backup

Readout chain

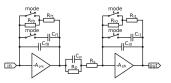
Components

- 16 sensor pads bonded
- Sensor and fanout glued on
- FE ASICs bonded onto PCB
- Output buffers
- Biasing and power blocks

Backup

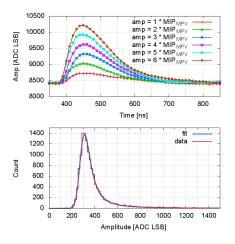
Electronics

FE ASIC - custom


- Charge-sensitive amplifier with 1st-order shaping
- T_{peak} ~ 60ns
- 2 modes of operation:
 - Calibration mode
 - Physics mode
- Active or passive feedback

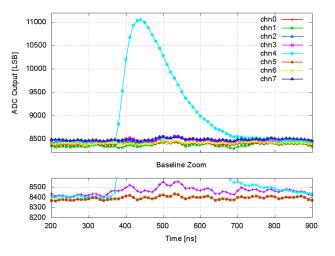
M. Idzik. *et. al.*, NIM-A 2009, 608:169-174

ADC - commercial


- CAEN VME-V1724
- 14 bits, 8 channels, 100 MSps

Results - Amplitude

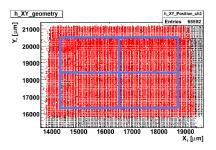
Good amplitude response

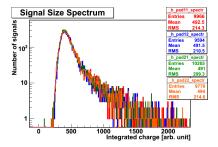


 (top) Time response to electrons with different energies

- Shape does not depend on amplitude
- (bottom) Spectrum for 4.5GeV electrons
 - $\label{eq:snr} {\rm SNR} \sim 19 \mbox{ for largest sensor} \\ {\rm capacitance} \\$

Backup


Results - Crosstalk



 $\mathsf{Crosstalk}\leqslant 1\%$

Backup

BeamCal charge collection

- Pad structure corresponds to $\sim 5 \times 5 \ mm^2 + \sim 200 \ \mu m$ gaps
- 4 independent pad areas show identical chare collection
- Signals in pads exhibit Landau distribution

- Two clusters of 8 pads each irradiated
- SNR: FET > 20, R_f > 13
- CCE: 33% at -60 V_{bias}