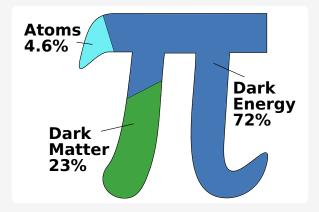
GridPix – better charge readout for dark matter search experiments? MC-PAD Project P5: Time Projection Chamber with Micro Pattern Gaseous Detector readout

> Rolf Schön Matteo Alfonsi & Patrick Decowski Niels van Bakel & Harry van der Graaf

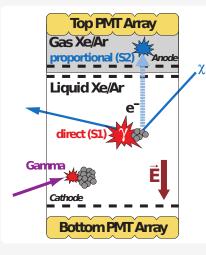


Nikhef, Amsterdam Detector R&D

September 20, 2012

hypothetical candidate: weakly interacting massive particle (WIMP)

Testing cool Gri

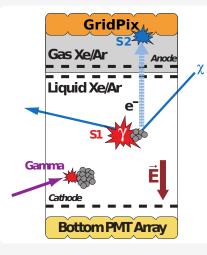

Cool Timepix nois

GridPix in (un)mixed argon

ook out!

Retrospect

WIMP detection with noble gases

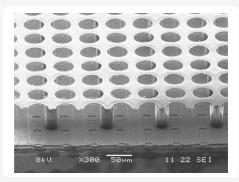


dual-phase noble gas TPC

$$\frac{S2}{S1}\bigg|_{\rm nuclear\ recoil} \neq \left.\frac{S2}{S1}\right|_{\rm electronic\ recoil}$$

GridPix

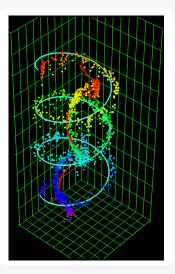
🚟 Alternative: direct charge readout



DARWIN

- candidate technology within DARWIN R&D (Dark matter WIMP search with noble liquids) arXiv:1012.4767
- less S1 signal vs. high electron efficiency (better S2 resolution)
- sensitivity increase for low energy events

🔝 The GridPix detector



- Micromegas-like mesh, 1 µm Al
- insulating spacer, 50 µm photoresist
- spark protection layer, 8 µm silicon-rich SiN
- Timepix readout chip

Cool Timepix noise

🚛 GridPix features

- 65k pixels on 14 mm imes 14 mm
- single electron detection efficiency > 98 %
- x y resolution $< 20 \,\mu m$
- Timepix chip $\Rightarrow \mu TPC$
- threshold 1100 electrons (at room temperature)

📴 GridPix in dual-phase noble gas

Main challenges

- low temperature: $T_{\ell Ar} = -186 \,^{\circ}\text{C}$, $T_{\ell Xe} = -108 \,^{\circ}\text{C}$
 - thermal stress on material
 - high gas pressure
 - lower electronic noise of Timepix
- pure gas
 - material with low/no outgassing
 - no quencher allowed? \Rightarrow higher discharge probability \Rightarrow lower achievable gain

Testing cool Grid

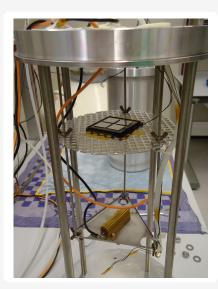
Cool Timepix noise

GridPix in (un)mixed argon

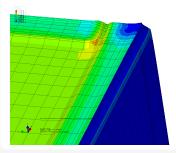
Retrospect

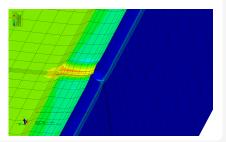
Operational test in an Ar cryostat

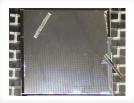
- ArDM test cryostat at CERN (Rubbia group)
- operation in high purity Ar at room temperature and close to $T_{\ell \rm Ar} = -186\,^{\circ}{\rm C}$
- lessons learned:

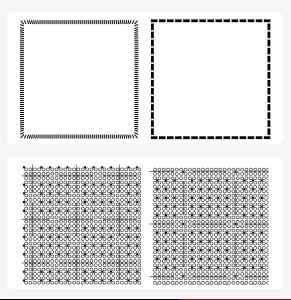

- stably operating GridPix in quencher-free argon at room temperature
- GridPix amplification stage works down to $-186\,^\circ\text{C}$
- \Rightarrow no show-stopper: concept works
- but improvements needed:
 - improvements on material robustness
 - noise of Timepix at low temperatures
 - gain in pure xenon (at room temperature and at -110 °C)

Robustness of GridPix at -130°C



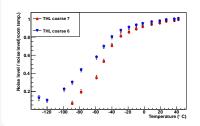



Simulating stress



\Rightarrow reduce/avoid stress by changing structure of grid support

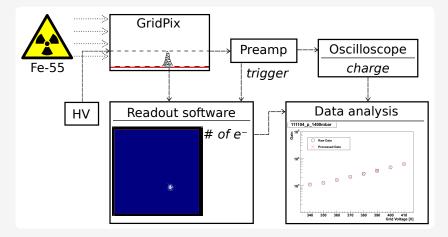
New photoresist structures VAD


- reduce lateral stress on edges ("dykes")
- reduce radial stress of Al grid
- test structures to be produced at IZM, Berlin
- 2–3 dummy wafers (8") à 100 chips

Retrospect

Electronic noise of the Timepix chip

- scans of threshold DAC
- ⇒ noise level



- normalised to values at chip's "room temperature" $\simeq 40\,^\circ\text{C}$
- cooled down to $-130\,^{\circ}\text{C}$

PAD

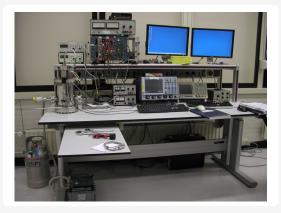
Gas gain measurement setup

- reduced noise on the preamp $< 12\,m\text{V}$
- increased data collection rate: 35 frames/s

idPix Testing cool

Cool Timepix n

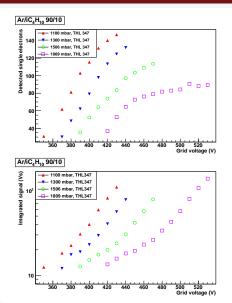
epix noise Gridl

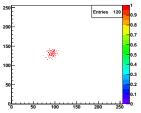

GridPix in (un)mixed argon

ook out!

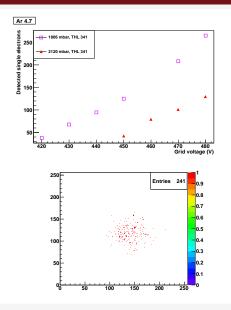
Retrospect

Setup in real life


- gain measurements at room temperature
 - reference gas Ar/iC_4H_{10} 90/10
 - without quencher: Ar 4.7



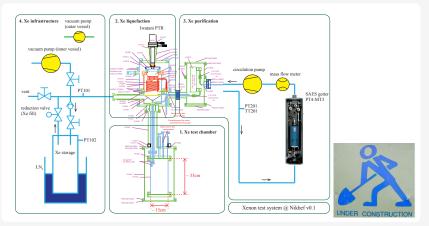
Reference gas Ar/iC₄H₁₀ 90/10



150

- detected electrons = hit pixels
- integrated signal from preamp on grid
- calibration is work in progress
- example event: $p = 1506 \text{ mbar}, V_{\text{grid}} = 470 \text{ V}$

Getting clean: 99.997 % purity Ar



- no quencher gas
- ⇒ less electron attachment during drift
- ⇒ more hit pixels
 - example event: p = 1806 mbar, $V_{\text{grid}} = 470 \text{ V}$

Dark Matter
GridPix
Testing cool GridPix
Cool Timepix noise
GridPix in (un)mixed argon
Look out!
Retrospect

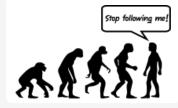
Image: State State

- gain measurements at room temperature
 - pure(r) argon (Ar 6.0)
 - pure xenon
- for dual-phase Xe: XAMS a xenon facility in Amsterdam

KAMS – detector simulation

- simulate detector response in GEANT4
- aid decision for parts of the TPC
- implement and test NEST toolkit

• Achievements


- studied improvements of GridPix amplification structure
- measured noise of Timepix chip at low temperatures
- collected vast amount of data with reference gases
- took data at higher gas density
- Projects
 - · build and test thermally robust GridPix prototypes
 - measure gain in xenon
 - at room temperature: Xe 5.0 and Xe/CH₄ 98/2
 - in dual-phase with XAMS
 - implement GEANT4 framework for the XAMS TPC

GridPix in (un)mixed arg

My personal evolution

May 2010: start of contract as MC-PAD ESR and PhD at Nikhef (promoter: Els Koffeman, supervisor: Jan Visser/Niels van Bakel)

- Sept 2010 (JSI): my first MC-PAD event (Ljubljana), "There is also a future outside academia!"
- March 2011 (CERN): my favourite MC-PAD training event, training for detector people on cutting edge detector technology
- Nov 2011 (PSI): my most valuable training for the "real" world, *how to sell yourself (in a good way)*
- spring 2012: my first supervision of a B.Sc. project

🔝 The MC-PAD network

Looking back at it...

- very good interaction with different people in the "same" field
- \Rightarrow excellent network
 - a lot of opportunities thanks to generous funding
 - training events = meet and discuss
 - $\bullet \ travels = conferences/workshops \\$
 - unfortunately few hands-on trainings (missed first two events)

...and beyond

- finish my PhD (until "May 2014"), incl. writing thesis
- start looking for a post-doc position/fellowship (gaseous detectors and/or direct dark matter search)
- defend my thesis

• ...

🔝 The MC-PAD network

Looking back at it...

- very good interaction with different people in the "same" field
- \Rightarrow excellent network
 - a lot of opportunities thanks to generous funding
 - training events = meet and discuss
 - travels = conferences/workshops
 - unfortunately few hands-on trainings (missed first two events)

...and beyond

- finish my PhD (until "May 2014"), incl. writing thesis
- start looking for a post-doc position/fellowship (gaseous detectors and/or direct dark matter search)
- defend my thesis
- ...
- live happily ever after

Thanks to all of you for the nice & interesting time!

Rolf Schön (Nikhef)