





#### **Project 2: Hybrid Pixel Detectors**

#### (X-ray Radiation Damage Studies and Design of a Silicon Pixel Sensor for Science at the XFEL)

Jiaguo Zhang<sup>1</sup>

(Under the supervision of Prof. Robert Klanner<sup>1</sup>)

<sup>1</sup>Institute for Experimental Physics, Hamburg University, Hamburg, Germany

J. Zhang, Uni-Hamburg

# Outline

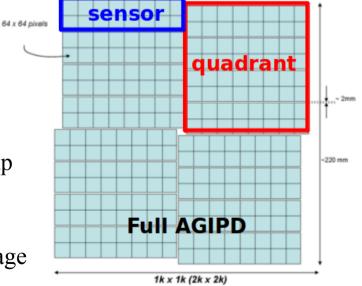
#### **Scientific work:**

- Motivation: Radiation hard silicon sensors for the XFEL
- Selected topics in this talk:
  - Understanding of X-ray induced radiation damage
  - Characterization and determination of damage related parameters
  - Influence on electric properties of segmented sensors
- Review on other achievements

#### **General aspects:**

- Benefits from MC-PAD framework
- Suggestions

### **Motivation**


**Motivation:** Development of radiation hard (0 - 1 GGy!) silicon pixel sensors for experiments with hard X-rays (3 keV – 25 keV) at the European XFEL - work done within AGIPD collaboration

#### Method (collaboration with J. Schwandt, PhD student, Hamburg University):

- Extract microscopic parameters related to X-ray irradiation
- Understand the influence of X-ray irradiation on electrical properties of segmented sensors
- Implement the extracted parameters in TCAD simulation and verify results with measurements on segmented sensors
- Optimize sensor design using TCAD simulation
- Sensor layout design based on optimized parameters

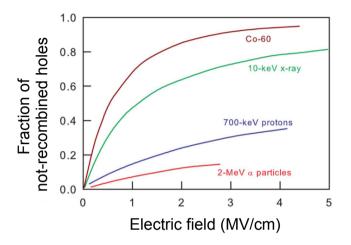
#### Main effects in silicon sensors @ XFEL:

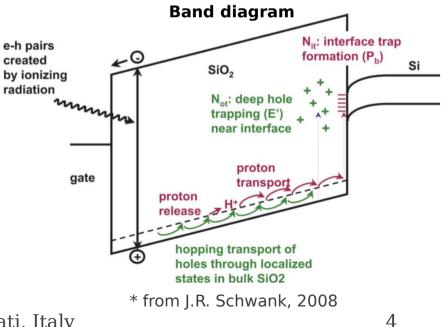
- No bulk damage for  $E_{x-rays} < 300 \text{ keV}$
- Surface damage: oxide charges and interface traps build up
  - $\rightarrow$  increase leakage current (noise + power dissipation)
  - $\rightarrow$  reduce breakdown voltage
  - $\rightarrow$  increase inter-pixel capacitance and full depletion voltage
  - $\rightarrow$  charge losses below the Si-SiO<sub>2</sub> interface
- J. Zhang, Uni-Hamburg 19-22 Sept. 2012, Frascati, Italy



### X-ray induced defects in silicon sensors

#### Formation of defects induced by X-ray ionizing radiation:

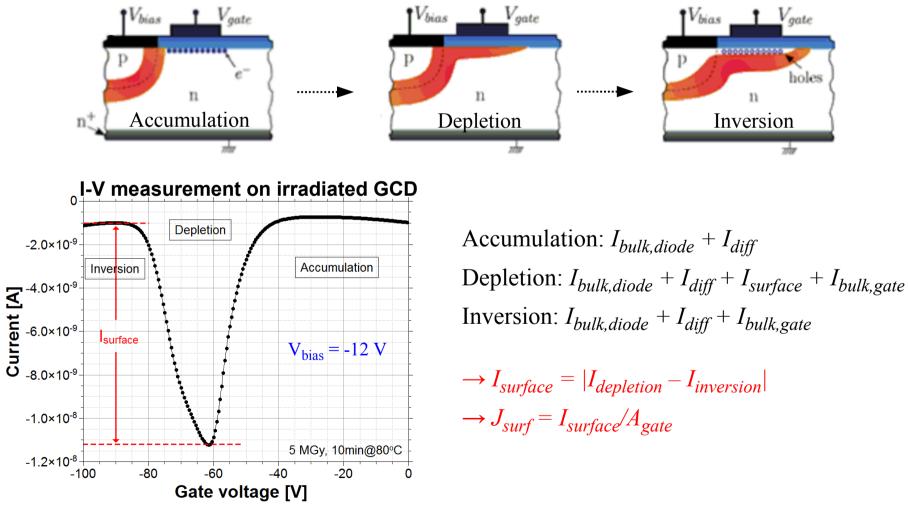

- X-rays produce electron-hole pairs in SiO<sub>2</sub> [~ 18 eV/pair]
- Fraction of electron-hole pairs recombine:
  - $\rightarrow$  field dependent yield of e-h pairs
- Remaining electrons escape from SiO<sub>2</sub> [ $\mu_e \sim 20 \text{ cm}^2/(\text{V}\cdot\text{s})$ ]
- Holes trapped in vacancies near Si-SiO<sub>2</sub> interface  $[\mu_h < 10^{-5} \text{ cm}^2/(\text{V}\cdot\text{s})]$


e.g.,  $V_{ox} + h^+ \rightarrow V_{ox}^+ \longrightarrow$  oxide charges ( $N_{ox}$ )

Protons get released and react with passivated dangling
 bonds at the interface:

e.g., 
$$V_{ox}H_2 + h^+ \rightarrow V_{ox}H_2^+ \rightarrow V_{ox}H + H$$
  
 $H^+ + SiH_{int} \rightarrow Si \cdot H_2$   
 $\bigcup$   
interface traps (N<sub>it</sub>)

J. Zhang, Uni-Hamburg






### **Defect characterization: I-V, TDRC & C/G-V**

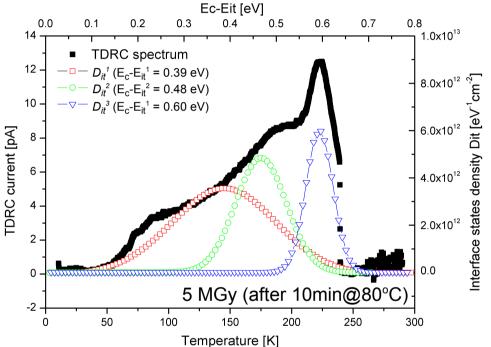
#### Current-Voltage (I-V) measurement on Gate-Controlled Diode (GCD) for $J_{surf}$ ( $\mu$ A/cm<sup>2</sup>):

• Increase of surface current density  $J_{surf} \leftarrow D_{it}^{mid-gap} (eV^{-1}cm^{-2})$ 



J. Zhang, Uni-Hamburg

### **Defect characterization: I-V, TDRC & C/G-V**


#### Thermal Dielectric Relaxation Current (TDRC) measurement on MOS capacitor for $N_{it}^{(i)}$ (cm<sup>-2</sup>):

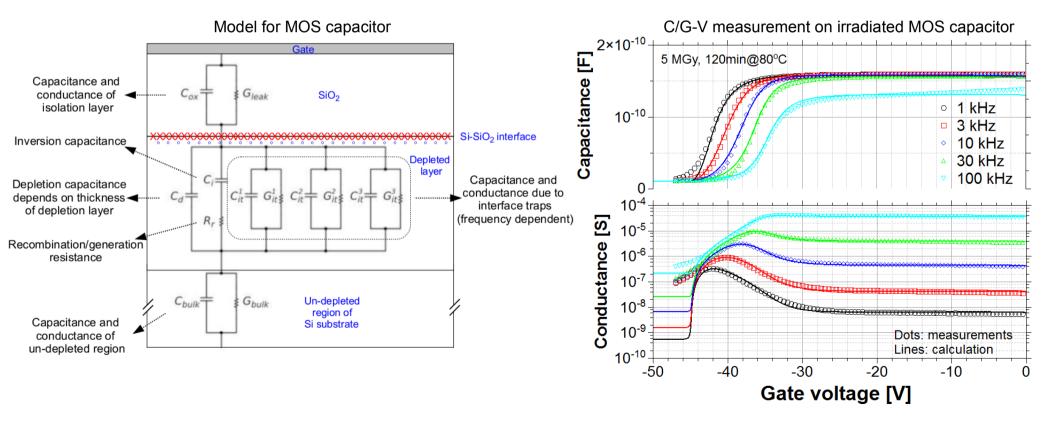
- Measurement technique: Thermal Dielectric Relaxation Current (TDRC)
  - (1) Bias the MOS capacitor to accumulation
    - $\rightarrow$  fill interface traps with electrons
  - (2) Cool down to 10 K  $\rightarrow$  freeze traps
  - (3) Bias to deep depletion and heat up to 290 K → trapped charges at the Si-SiO<sub>2</sub> interface get released

J.

 $\begin{cases} \text{Temperature [K]} \rightarrow E_c - E_{it} \text{ [eV]} \\ \text{TDRC signal [pA]} \rightarrow D_{it} \text{ [eV}^{-1} \text{cm}^{-2} \text{]} \end{cases}$ 

 $N_{it}^{(i)} = \int_{E_v}^{E_c} D_{it}^{(i)}(E_{it}) dE_{it}$ 




• Properties of 3 dominant interface traps in silicon band gap after X-ray irradiation:

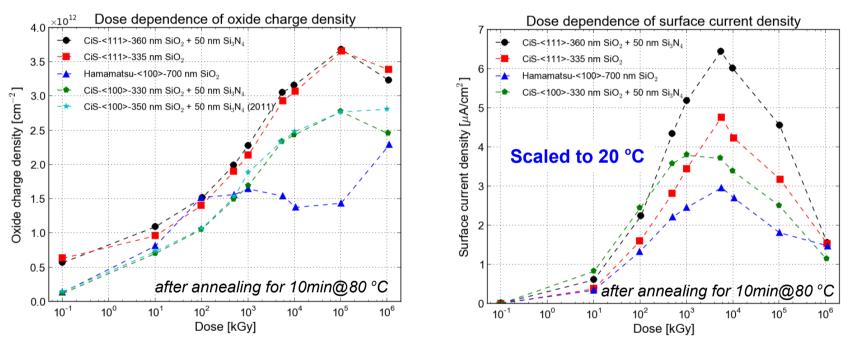
|                      |                                      | $D_{it}^{1}$          | $D_{it}^{2}$          | $D_{it}^{3}$          |
|----------------------|--------------------------------------|-----------------------|-----------------------|-----------------------|
|                      | E <sub>c</sub> -E <sub>it</sub> [eV] | 0.39                  | 0.48                  | 0.60                  |
|                      | FWHM [eV]                            | 0.26                  | 0.13                  | 0.071                 |
|                      | σ <sub>eff</sub> [cm²]               | 1.2x10 <sup>-15</sup> | 5.0x10 <sup>-17</sup> | 1.0x10 <sup>-15</sup> |
| . Zhang, Uni-Hamburg |                                      | 19-22 Sept. 2012, 1   | 6                     |                       |

### **Defect characterization: I-V, TDRC & C/G-V**

Capacitance/Conductance-Voltage (C/G-V) measurement on MOS capacitor + model calculation for  $N_{ox}$  (cm<sup>-2</sup>):

- Frequency shift of C/G-V curves  $\leftarrow N_{it}^{(i)}$
- Shift in gate voltage  $\leftarrow N_{ox} + N_{it}^{(i)}$
- TDRC spectra + model  $\rightarrow$  reproduce measured C/G-V curves  $\rightarrow N_{ox}$




J. Zhang, Uni-Hamburg

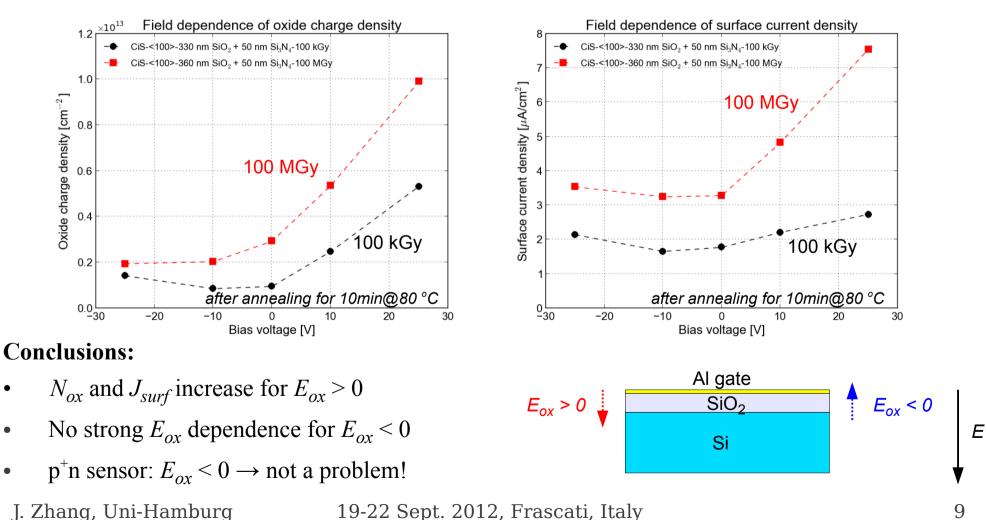
## Results: N<sub>ox</sub> & J<sub>surf</sub> vs. dose

#### Investigations:

- Orientation: <111> and <100>
- Vendor: CiS and Hamamatsu

- Insulator:  $SiO_2$  and  $SiO_2 + Si_3N_4$
- Unbiased during irradiation

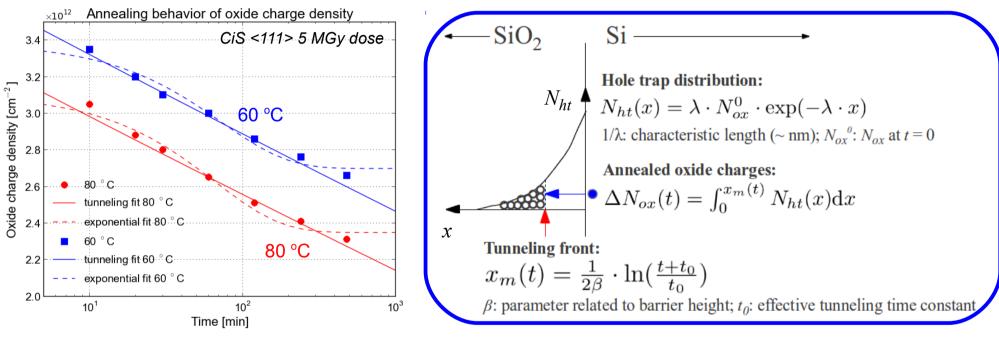



#### **Conclusions:**

- $N_{ox}$  and  $J_{surf}$  saturate with dose: typically  $N_{ox} \sim (1.5 4.0) \ge 10^{12} \text{ cm}^{-2}$ ,  $J_{surf} \sim (3 7) \ \mu\text{A/cm}^2$
- Differences observed for orientations,  $SiO_2 vs. SiO_2 + Si_3N_4$ , vendors
- Saturation mechanism of  $N_{ox}$ : equilibrium between hole trapping and electron recombination
  J. Zhang, Uni-Hamburg 19-22 Sept. 2012, Frascati, Italy

## Results: Nox & Jsurf vs. Eox

#### Investigations:


- CiS <100> MOS capacitor and Gate-Controlled Diode (~ 350 nm SiO<sub>2</sub> + 50 nm Si<sub>3</sub>N<sub>4</sub>)
- Electric field in the oxide  $E_{ox}$ : ~ (0 0.7) MV/cm [oxide breakdown: ~ 10 MV/cm]



### Results of annealing: Nox vs. time

#### Annealing of Nox:

• Exponential decay:  $N_{ox}(t) = A \cdot \exp(-\frac{t}{\tau}) + y_0 \rightarrow \text{description inadequate}$ 



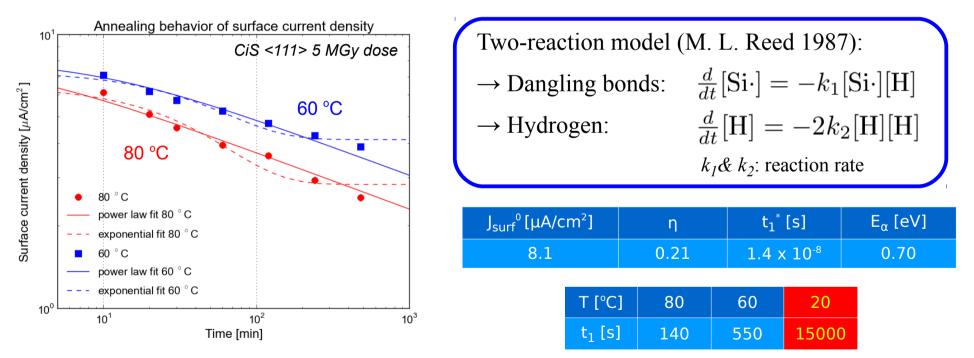
• "Tunnel anneal" model [T. R. Oldham et al., 1986]:

$$N_{ox}(t) = N_{ox}^0 \cdot (1 + t/t_0)^{-\frac{\lambda}{2\beta}} \quad \text{with} \quad t_0(T) = t_0^* \cdot \exp\left(\frac{\Delta E}{k_B T}\right)$$

 $t_0^*$ : tunneling time constant  $\Delta E$ : energy difference between trap level and silicon Fermi level

| N <sub>ox</sub> <sup>0</sup> [cm <sup>-2</sup> ] | λ/2β  | t <sub>0</sub> * [s]    | ΔΕ [eV] | T [°C]             | 80 | 60  | 20    |
|--------------------------------------------------|-------|-------------------------|---------|--------------------|----|-----|-------|
| 3.6 x 10 <sup>12</sup>                           | 0.070 | 5.4 x 10 <sup>-12</sup> | 0.91    | t <sub>0</sub> [s] | 48 | 290 | 22000 |

 $\Delta E = E_t(SiO_2) - E_F(Si) \rightarrow E_t(SiO_2) \sim 6.0$  eV, compatible with existing data

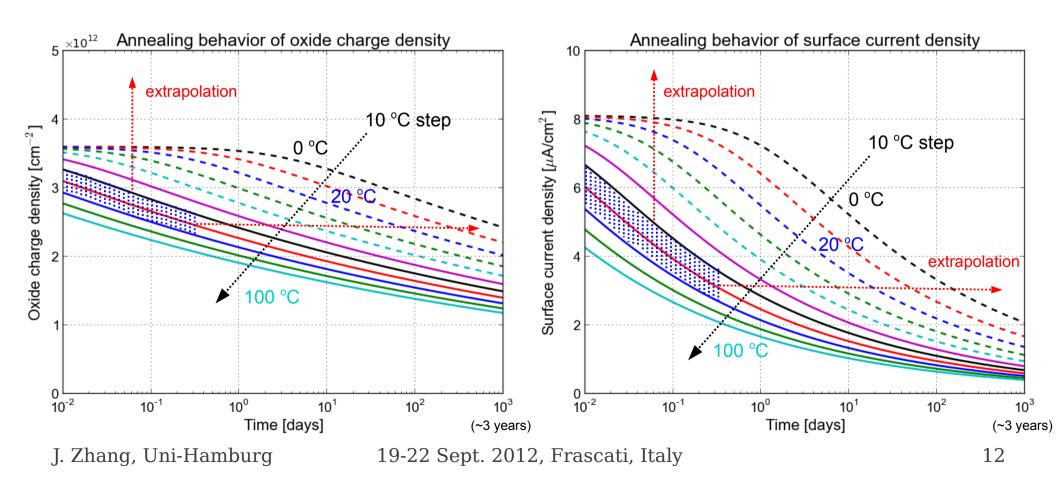

J. Zhang, Uni-Hamburg

## Results of annealing: *J<sub>surf</sub>* vs. *time*

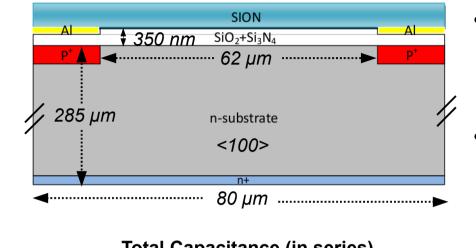
#### Annealing of *J<sub>surf</sub>* (*I<sub>surface</sub>*):

- Exponential decay:  $I_{surface}(t) = A \cdot \exp(-\frac{t}{\tau}) + y_0 \rightarrow \text{description inadequate}$
- "Two-reaction model":

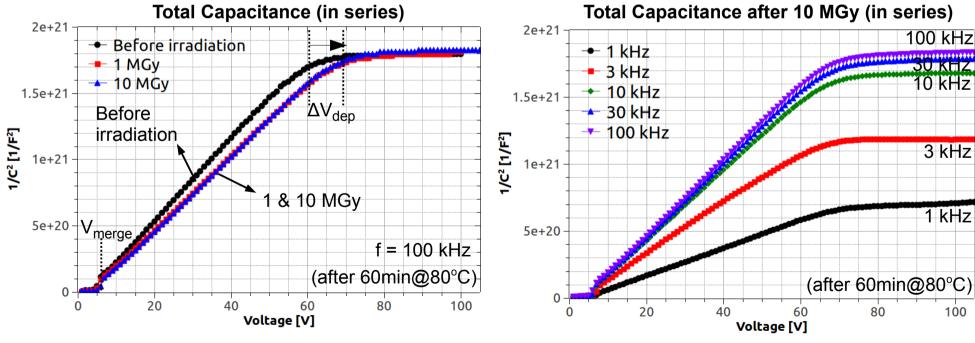
$$I_{surface}(t) = I_{surface}^0 \cdot (1 + t/t_1)^{-\eta} \quad \text{with} \ t_1(T) = t_1^* \cdot \exp\left(\frac{E_\alpha}{k_B T}\right) \text{ and } \eta = \frac{k_1}{2k_2}$$




- Data described by power law predicted by "two-reaction model"
- Data show that same function with different parameters for the different traps  $N_{it}^{(i)}$  describes data
- J. Zhang, Uni-Hamburg 19-22 Sept. 2012, Frascati, Italy


### Long term behavior of Nox & Jsurf

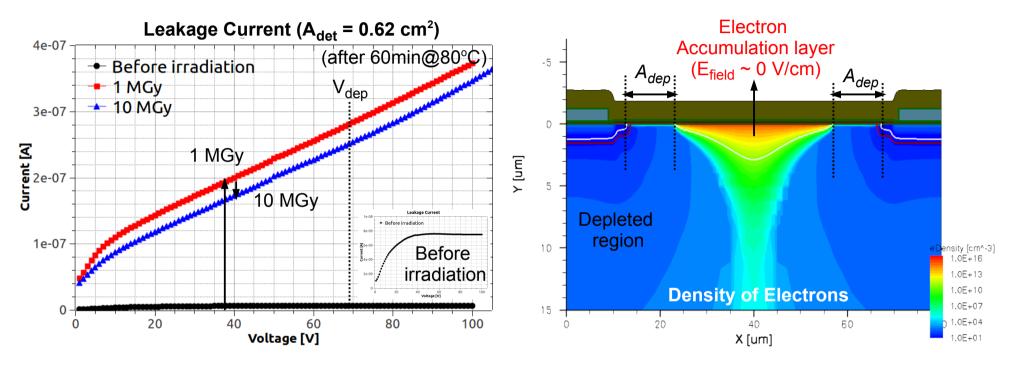
Results based on calculation for 5 MGy dose (results scalable to other doses):


- Slow annealing for  $N_{ox}$ : e.g., at 20 °C,  $\Delta N_{ox}/N_{ox}$  by less than 50% in <u>3 years</u> (but...)
- Reduction of  $J_{surf}$  in days: e.g., at 20 °C,  $\Delta J_{surf}/J_{surf}$  by 50% just in <u>5 days</u>!



### **C-V** curves of p<sup>+</sup>n strip sensor




- V<sub>dep</sub> increases ~10 V after irradiation due to the presence of surface charges (not due to change of doping concentration)
- Strong frequency dependence of total capacitance observed for V<sub>bias</sub> < 300 V</li>



J. Zhang, Uni-Hamburg

### I-V curves of p<sup>+</sup>n strip sensor

• Leakage current:  $I_{leakage} = I_{bulk} + I_{surface}$ , where  $I_{surface} = J_{surf} \cdot A_{dep}$ 



- Increase of  $I_{leakage}$  after irradiation  $\leftarrow$  surface current density  $J_{surf} \leftarrow N_{it}$
- "Linear" increase of  $I_{leakage}$  with bias voltage  $\leftarrow$  depleted area  $A_{dep}$  at Si-SiO<sub>2</sub> interface
- Decrease of  $I_{leakage}$  with irradiation dose  $\leftarrow$  result of competition between  $N_{it}$  and  $A_{dep}$
- For irradiation under bias,  $I_{leakage}$  larger by ~ 100 nA
- J. Zhang, Uni-Hamburg 19-22 Sept. 2012, Frascati, Italy

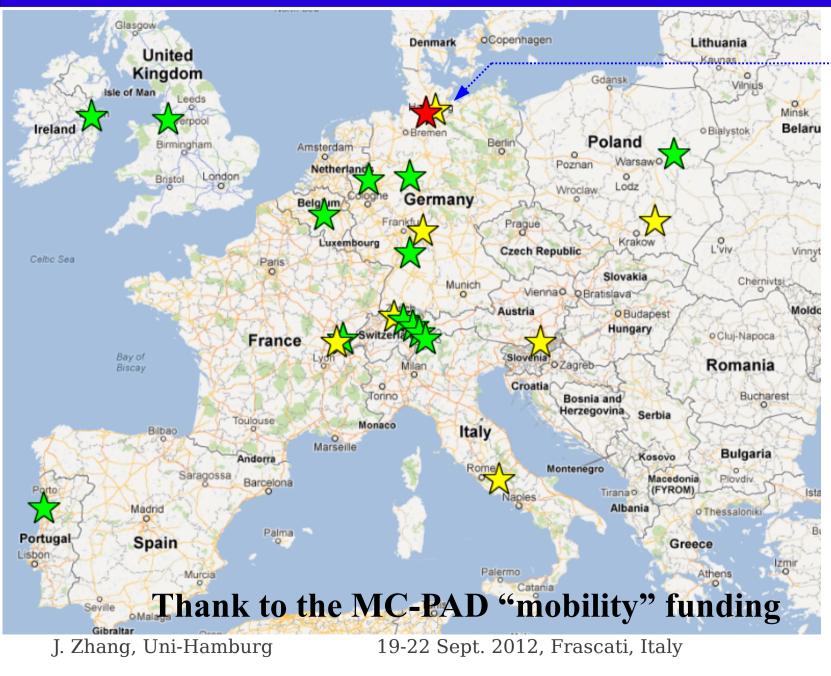
### **Review on other achievements**

#### **Other work done and experiences:**

- Dose calibration and operation of irradiation setup at the DESY DORIS III synchrotron light source
- Helped colleagues from other labs with irradiation set-up
- Model development for irradiated MOS capacitors
- SPICE simulation for non-irradiated  $p^+$  on n microstrip sensors
- Test beam experiment at CERN SPS with T. Rohe, J. Sibille, et al.
- Response of PMOSFET and NMOSFET to irradiation dose
- Characterization of electrical properties of n<sup>+</sup> on n pixel sensors with X-ray irradiation
- Mask design of the AGIPD sensor for the European XFEL
- Supervision of a summer student from National Technical University of Athens

### **Review on other achievements**

#### Talks given:


- "Investigation of X-ray induced radiation damage at the Si-SiO<sub>2</sub> interface of silicon pixel sensors for the European XFEL" at 14<sup>th</sup> iWoRID, July 2012, Figueira da Foz, Coimbra, Portugal
- "Status report: Radiation damage and sensors" at 10<sup>th</sup> XDAC Meeting, October 2011, XFEL GmbH-Hamburg
- "Study of X-ray radiation damage in silicon sensors" at 13<sup>th</sup> iWoRID, July 2011, ETH-Zurich and PSI-Villingen
- "Study of surface radiation damage in silicon sensors" at 18<sup>th</sup> RD50 Workshop, May 2011, Liverpool

### **Review on other achievements**

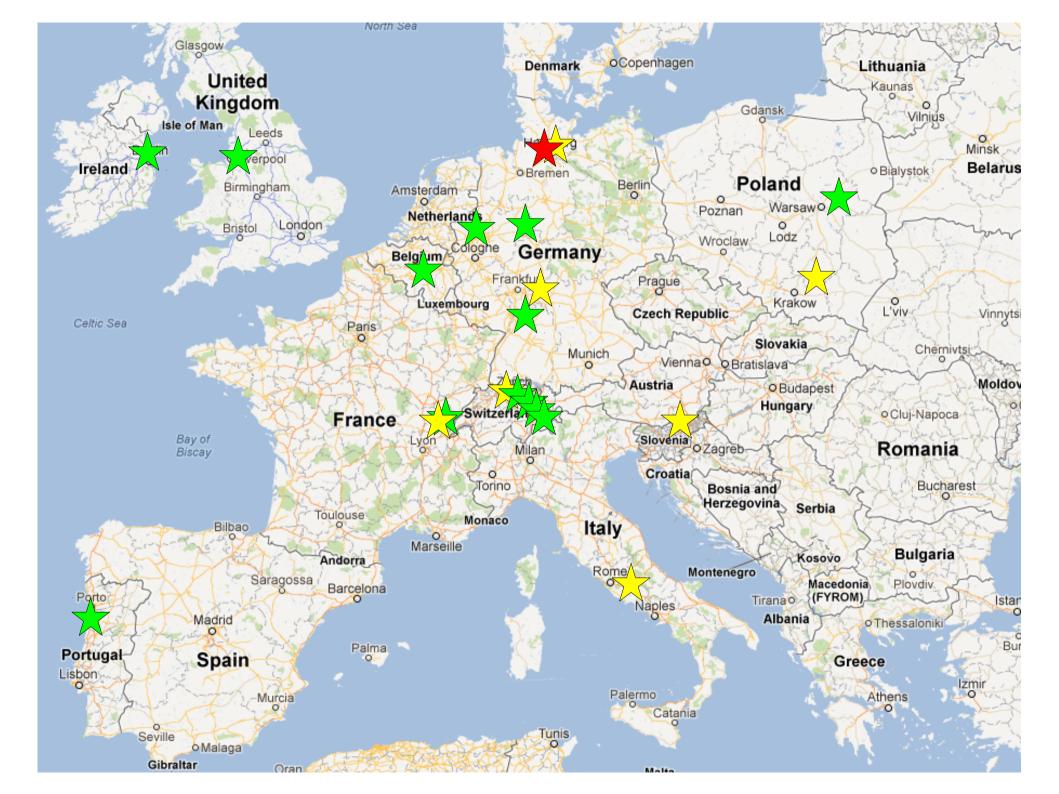
#### Work results in:

- J. Zhang, et al., "Investigation of X-ray induced radiation damage at the Si-SiO<sub>2</sub> interface of silicon pixel sensors for the European XFEL", to be published by *Journal of Instrumentation*.
- T. Poehlsen, et al., "Charge losses in segmented silicon sensors at the Si-SiO<sub>2</sub> interface", to be published by *Nuclear of Instruments and Methods* A.
- J. Zhang, et al., "Study of radiation damage induced by 12 keV X-rays in MOS structures built on high resistivity n-type silicon", *Journal of Synchrotron Radiation*, Vol.19, Issue 3, 340-346 (2012).
- J. Schwandt, et al., "Optimization of the radiation hardness of silicon pixel sensors for high X-ray doses using TCAD simulations", *Journal of Instrumentation*, Vol.7, C01006 (2012).
- J. Zhang, et al., "Study of X-ray radiation damage in silicon sensors", *Journal of Instrumentation*, Vol.6, C11013 (2011).

### **Benefits from MC-PAD framework**



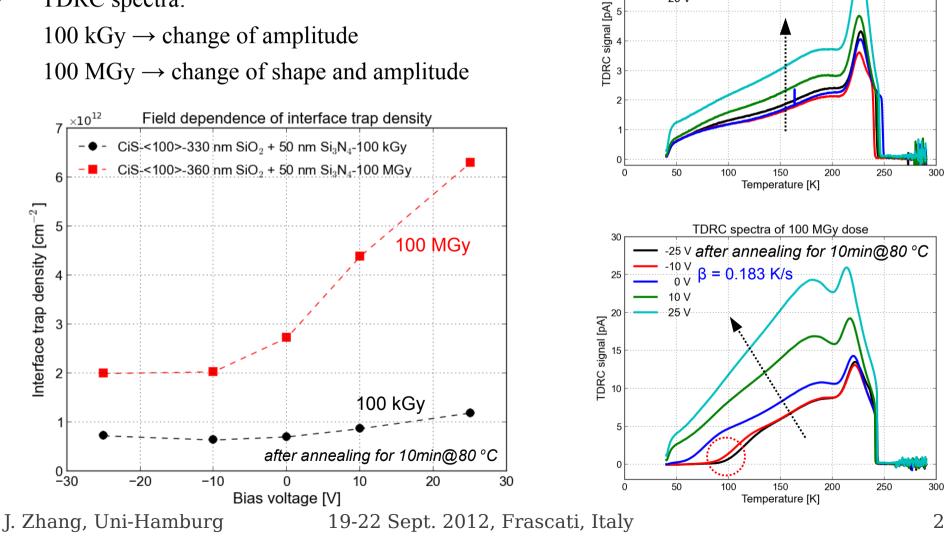
Currently, I am in Hamburg writing and finalizing the PhD thesis. Future: Postdoc


MC-PAD training

Conferences, meetings and workshops

Suggestion: Exchange between researchers from different institutes Special thanks go to:

- MC-PAD program
- Christian Joram
- All fellows within the MC-PAD
- Prof. Robert Klanner
- All those I worked with: Eckhart Fretwurst, Ioana Pintilie, Tilman Rohe, Joern Schwandt, Monica Turcato, Thomas Poehlsen, Jennifer Sibille, Thorben Theedt, Hanno Perrey, ...


# Thanks for your attention, and good luck for your future!



## Results: N<sub>it</sub> vs. E<sub>ox</sub>

#### TDRC spectra and N<sub>it</sub>:

- Dependence on  $E_{ox}$  similar to  $J_{surf}$
- TDRC spectra:
  - 100 kGy  $\rightarrow$  change of amplitude 100 MGy  $\rightarrow$  change of shape and amplitude



TDRC spectra of 100 kGy dose

β = 0.183 K/s

25 V

-25 V after annealing for 10min@80 °C