Measurements of SOI Detectors INTPIX 3a, 3b and DIPIX CZ-n, FZ-n

Mohammed Imran Ahmed

AGH-UST and IFJ-PAN Krakow In collaboration with KEK Tsukuba (Japan)

Supervisor:

Prof. Marek Idzik (AGH) Dr. Piotr Kapusta (IFJ) Prof. Michal Turala (IFJ)

MC-PAD Closing Event, 19-22 September, 2012 Laboratori Nationali di Frascati, INFN

Akademia Górniczo-Hutnicza im. Stanisława Staszica gh w Krakowie

Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego Polskiej Akademii Nauk

Mohammed Imran Ahmed (AGH and IFJ)

September 21, 2012 1 / 30

Home country : India

Past background:

- Finish Bachelors in September 2005, Osmania university India
- Graduated in July 2009, University of Luebeck, Germany.
- MC-PAD: P10 Monolithic Detectors (Sep'2009-Aug'2012)

Present status:

- PhD student : AGH-UST (Possibly finish PhD thesis until sep'2013)
- Thesis advisor : Prof. Marek Idzik (AGH-UST) and Prof. Michal Turala (IFJ-PAN)
- No funding (Any suggestion, how to find funding?)

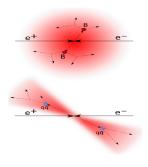
- 2 SOI CMOS Technology
- 3 Test and Measurements

4 Achievements

3 / 30

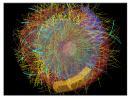
September 21, 2012

Motivation


- 2 SOI CMOS Technology
- 3 Test and Measurements
- Achievements
- 5 General Aspects

Motivation (Physics)

- In Particle Physics silicon detectors, strips and pixels, are used to detect trajectory of particles with high precision:
 - To help in track reconstruction to identify primary vertices (at LHC, in pp collisions, there are up to 20-30 simultaneous interactions, each with many tracks; in Pb-Pb collisions thousands of particles are produced)
 - To increase the precision of momenta measurements
 - To allow for identification of secondary vertices of short living particles and measuring their lifetime (B-physics experiments)
- Tracking detectors located near-by the collision point have to have following features:
 - High granularity (Events at Belle II, LHC and other HEP experiments result in huge number of ionizing particles passing through the detectors)
 - Mass as low as possible (as it is responsible for multiple scattering of particles and conversion of photons which changes the original pattern of primary interactions)
 - High precision of position measurements with truly 2-D readout (if possible), to avoid combinatoric problems in reconstruction
 - Be radiation resistant



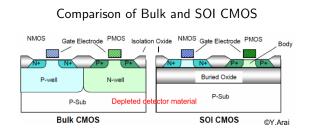
Case of B-factories

The lifetime of B mesons is only a fraction of the ps....

Their decay paths are in order of few mm (even with substantial Lorenz boost...).

LHC case

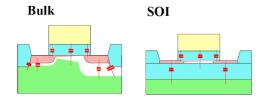
Event displays from lead ion collisions recorded by ALICE (6.11.2011)

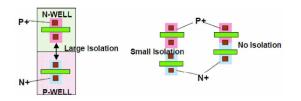

An ATLAS event with more then 20 reconstructed vertices (20 overlaid minimum bias events)

2 SOI CMOS Technology

Mohammed Imran Ahmed (AGH and IFJ) Measurements of SOI Detectors

- Latchup free No parasitic PNPN structure
- High Temperature operation No latchup, less leakage, less Vth Shift
- Low junction capacitance High speed and Low Power
- Small area No well isolation
- Good Radiation hardness and
- Low cost

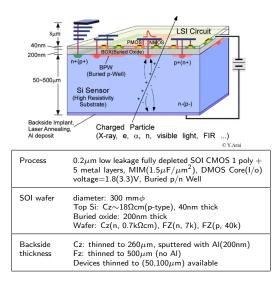

Comparison of Bulk and SOI CMOS

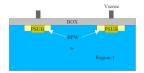

(Ref. 'SOI Technology' by Jean-Pierre Colinge, Springer)

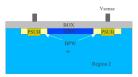
- Latchup free No parasitic PNPN structure
- High Temperature operation No latchup, less leakage, less Vth Shift
- Low junction capacitance High speed and Low Power
- Small area No well isolation
- Good Radiation hardness and
- Low cost

Comparison of Bulk and SOI CMOS

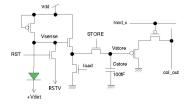
- Latchup free No parasitic PNPN structure
- High Temperature operation No latchup, less leakage, less Vth Shift
- Low junction capacitance High speed and Low Power
- Small area No well isolation
- Good Radiation hardness and
- Low cost



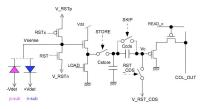

Comparison of Bulk and SOI CMOS


- Latchup free No parasitic PNPN structure
- High Temperature operation No latchup, less leakage, less Vth Shift
- Low junction capacitance High speed and Low Power
- Small area No well isolation
- Good Radiation hardness and
- Low cost

SOI CMOS Pixel



Wafer type	Resistivity [kΩ-cm]	Bulk thickness [µm]	Estimated full depletion voltage [V]
CZn	0.7	260	300
FZn	7	500	100
FZp	40	500	60



INTPIX3 and DIPIX2

- INTPIX is signal integration type pixel detector
- Two detectors are tested in the family of INTPIX3 (INTPIX3a, INTPIX3b)

- DIPIX is dual mode integration type pixel detector
- Two detectors are tested in the family of DIPIX2 (CZ-n, FZ-n)

	pixel size [µm]	No. of pixels	Effective area [mm]	chip area [mm]	Fabrication year	No. of pixel type	CDS in pixel
INTPIX3a	20 × 20	128 × 128	2.56×2.56	5 × 5	FY08	8	No
INTPIX3b	20 × 20	128 × 128	2.56×2.56	5 × 5	FY09-1	8	No
DIPIX2	14 × 14	256 × 256	3.584 × 3.584	5 × 5	FY10-1	2	Yes

1 Motivation

- 2 SOI CMOS Technology
- 3 Test and Measurements

Achievements

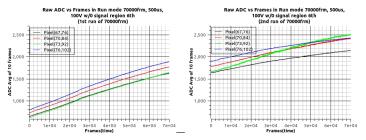
5 General Aspects

September 21, 2012

Study of pixel behaviour

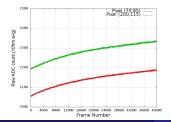
Long time stability test

Stability test is to check whether the detector is capable of operating in long run measurements.


Test Setup :

Parameters	INTPIX3	DIPIX2
Environment	Dark	Dark
Signal	No	No
No. of Frames	70000	40000
Integration Time	500 μ s	$500 \mu s$
Scan Time (pixel readout	1000 ns/pixel	640 ns/pixel
time)		
RST time without cds and	1000ns and -	2040 ns and 2160 ns
with cds		
RSTV for N and P-type	700mV	750mV and 1300mV
wafer		

• The Back voltage for both detector = 100 V.



Results of Stability test (INTPIX 3a and DIPIX2 CZ-n)

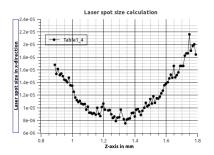
INTPIX 3a

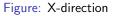
DIPIX2 CZ-n

Summary

- DIPIX2 is stable contrary to INTPIX3 and so it may work for long time run.
- Small initial changes in number of counts in DIPIX2 may probably be reduced by maintaining a constant temperature.

see backup slide for more detail


Laser Details				
Laser Driver	PDL 800-D			
Frequency	80 MHz			
Modes of operation	Pulse			
Laser Head wavelength	1060 nm			
3D motorized stage	X,Y and Z			



- The laser with 1060nm of wavelength is used and placed at a distance of 0.7mm from the detector.
- The smallest spot size can be achieve from this laser is about 8 μm and the pixel size is 20 $\mu m.$

Results of Laser (INTPIX 3a)

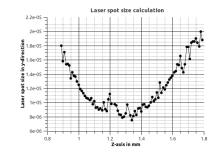
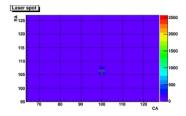



Figure: Y-direction

PAD

Results of Laser (DIPIX FZ-n)

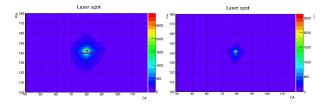
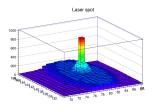
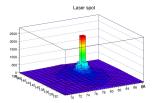


Figure: Back voltage was set to a) Left fig. 10V, b) Right fig. 70V (FZ-n)

- A bunch of pixels around the hit pixel(halo) having 12 to 15 % of hit pixel count is seen.
- This problem is seen in both sensors. The worse is FZ-n.
- Halo depends mostly on Laser Intensity (increase with intensity).


Results of Laser (DIPIX FZ-n)


Parameters	CZ-n Type	FZ-n Type
Back Voltage	80V	60V
Integration Time	$100 \mu s$	$100 \mu s$

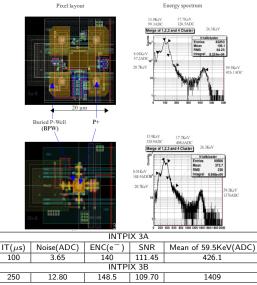
- The presence of Halo, force us to do the scan of back voltage and Integration time to optimize them in order to reduce halo.
- Optimization is used to reduce the Halo and spot size.

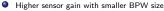
After optimization

Americium radiation data and setup

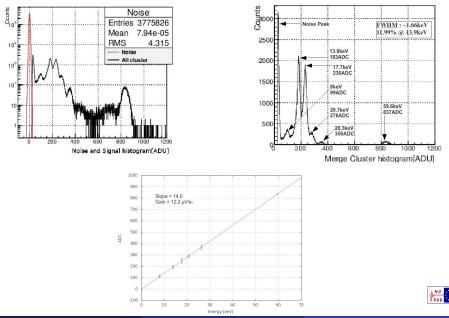
- Am-241 source is used with the activity of 10mCi(=370MBq).
- The rate of incident photons is low.
- Setup is placed in black box.

Detector	Parameter setting	Parameter setting
	(Am-241)	(Pedestal)
INTPIX 3a INTPIX 3b	I.T = 100 μ s RSTV = 750mV Events = 25000 I.T = 250 μ s RSTV = 550mV Events = 10000	Scan Time = 1000ns/pixel Reset length = 240ns Frequency = 95Hz Events = 500
DIPIX 2	$I.T = 100 \ \mu s$ $RSTV = 750mV$ $Events = 20000$	Scan Time = 640ns/pixel Reset length = 2040ns Frequency = 22Hz Events = 500


Radiation Data					
Type Energy					
Gamma	59.5KeV				
	26.3KeV				
	13.9KeV				
Cu L x-ray	8.01KeV				
Np L-x-ray	17.7KeV				
Np L-x-ray	20.7KeV				

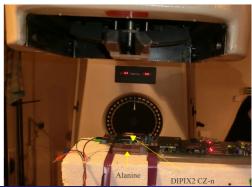


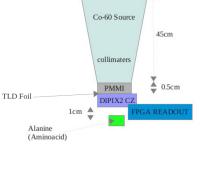
- Bias voltage = 100V and black box is use for the measurement.
- Pedestal data is used to remove bad pixels.
- Bad frames and common mode noise are removed from both pedestal and Am-241 run.


Results of Am-241 (INTPIX 3a and 3b)

Linear scale

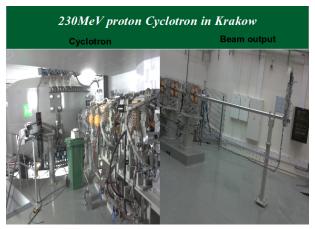
CZ N-Type Without CDS						
Region	IT(µs) Noise (ADC) ENC(e ⁻) SNR 59.5KeV (ADC)					
1	100	4.3	\simeq 86	$\simeq 189$	812	
	CZ N-Type With CDS					
Region	IT	Noise	ENC(e ⁻)	SNR	59.5KeV (ADC)	
1	100	3.6	$\simeq 85$	\simeq 192	690	


FZ N-Type Without CDS						
Region	Region $ T(\mu s) $ Noise (ADC) $ ENC(e^-) $ SNR 59.5KeV (ADC)					
1	100	5.1	\simeq 127	\simeq 129	657	
2	100	4.7	\simeq 141	$\simeq 115$	543	


- 1st region is the best of both sensor (ENC=85e⁻ and SNR=189 using Am-241 source 59.6keV), 2nd region is having lot of bad and hot pixels.
- Readout with CDS give similar results.

Irradiation using Co-60 source

- DIPIX2 was irradiated with Co-60 γ's, and Dose rate was 1.43Gy/min.
- The irradiation was interrupted every 20 min (safety) and last for 12 hour in total.
- Before and after irradiation a TLD foil is used to know the beam profile.
- Alanine capsules (change every 40 min) are place below the DIPIX2 to calculate the dose rate.



September 21, 2012

۸

Future plans

- Irradiate Double SOI and DIPIX2 detectors using CCB facility in Krakow.
- Measurements of new SOI detector (Designed at Krakow)
- TCAD simulation

Achievements 4

Mohammed Imran Ahmed (AGH and IFJ)

Publications

 High-Resolution Monolithic Pixel Detectors in SOI Technology International Workshop (PIXEL2012) on Semiconductor Pixel Detectors for Particles and Imaging (2-7 September 2012).

Authors: Toshinobu Miyoshi, Yasuo Arai, Mohammed Imran Ahmed, Ryo Ichimiya, Yukiko Ikemoto, Ayaki Takeda, Piotr Kapusta, Yowichi Fujita , Kazuya Tauchi, (Paper under preparation NIMA)

 Measurement Results of DIPIX Pixel Sensor Developed in SOI Technology 12th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Italy (20-26 May 2012).

Authors: Mohammed Imran Ahmed, Yasuo Arai, Marek Idzik, Piotr Kapusta, Toshinobu Miyoshi, Michal Turala (Paper in print NIMA).

 P-in-n and n-in-p sensor performance study of SOI monolithic pixel detectors 8th International "Hiroshima" Symposium on the Development and Application of semiconductor Tracking Detectors, Taipei, Taiwan 5-8 December 2011).
Authors: Toshinobu Miyoshi, Yasuo Arai, Mohammed Imran Ahmed, Ryo Ichimiya, Yukiko Ikemoto, Ayaki Takeda (Paper in print NIMA)

Presentations

- Testing of SOI Pixel Detectors for Particle Physics, 2nd CCB Users Meeting on Physics with the new 230 MeV proton cyclotron in Krakow (3rd September 2012).
- Measurement Results of DIPIX Pixel Sensor Developed in SOI Technology 12th Pisa Meeting on Advanced Detectors, La Biodola, Isola d'Elba, Italy (25th May 2012).
- Measurements of DIPIX2 Sensors CZ-n, FZ-n and FZ-p SOI Collaboration Meeting LBNL (16th March 2012)
- Talk on INTPIX3 back-gate effect test results FNAL SOI Collaboration Meeting (5th March 2010)

Reports

- Performance of INTPIX 3a and 3b
- Report on DIPIX Cz-n and Fz-n

1 Motivation

- 2 SOI CMOS Technology
- 3 Test and Measurements

Achievements

5 General Aspects

MC-PAD Training

Course	Host institute	Dates	Related to my research
Readout Electronics	AGH-UST Krakow Poland	17-19 September 2009	Useful
Geant4 Simulation and ROOT analysis	DESY Hamburg Germany	28-30 January 2010	Useful
Radiation Hardness and Silicon processing	JSI Ljubljana Slovenia	26-30 September 2010	Useful
Gaseous and photo detectors	CERN Geneva Switzerland	16-18 March 2011	Useful
CV writing and interview skills	PSI Zurich Switzerland	8-10 November 2011	-
Heavy lons and Calorimetry in HEP	GSI Darmstadt Germany	18-21 March 2012	-

Other Training

- Attend IDESA course on Digital design at Seville, Spain.
- TCAD simulation at KEK Tsukuba, Japan.

Acknowledgements

A big thanks to :

- Late Dr. Henryk Palka
- Marek Idzik, Michal Turala
- MC-PAD
- Christan Joram
- MC-PAD training event organizers

Negative aspects

- No participation from industry partners
- MC-PAD fellowship duration for ESR?

Thanks for your attention

Any question?

Backup:Stability Test of CZ-n pixel sensor

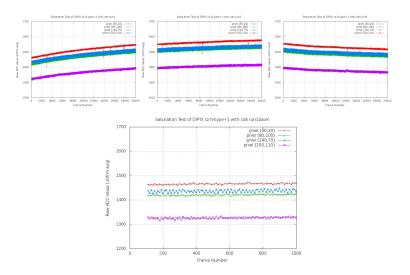


Figure: Stability test of CZ-n with CDS. (top 3 graphs each with 20000 frames, measured subsequently and bottom is zoom of initial 1000 frames)

Mohammed Imran Ahmed (AGH and IFJ)

Measurements of SOI Detectors