Seventh European summer school on experimental nuclear astrophysics

Sunday, 15 September 2013 - Friday, 27 September 2013 Santa Tecla (CT), Sicily, Italy

Book of Abstracts

ii

Contents

Electron screening effect in nickel	1
Elastic scattering of $^{17}\mathrm{O}$ ions from $^{58}\mathrm{Ni}$ and $^{208}\mathrm{Pb}$ at near-barrier energy \ldots	1

iv

0

Electron screening effect in nickel

Author: Aleksandra Cvetinović¹

¹ J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Corresponding Author: aleks.cvetinovic@gmail.com

For very low projectile energies, far below the Coulomb barrier, the nuclear reaction rate is very low and sensitive to electronic properties of target materials. In this case the projectile tunnels through a wide potential barrier. However, the electrons which are surrounding the reacting nuclei act as a screening potential, which leads to the incoming projectile seeing an effectively reduced Coulomb barrier. This increases the tunneling probability and enhances the nuclear reaction rates. To investigate the electron screening effect we compared γ -ray yields in different environments (Ni –metal and NiO –insulator) for the proton induced nuclear reactions: Ni-58(p, γ), Ni-60(p, γ) and Ni-64(p,n γ). We used a proton beam with energies between 1.08 MeV and 3.08 MeV accelerated by the 2 MV Tandetron accelerator at Jožef Stefan Institute. We also looked for shifts in resonance energy for reactions Ni-58(p, γ)and Ni-58(p, $p'\gamma$).

1

Elastic scattering of $^{17}\mathrm{O}$ ions from $^{58}\mathrm{Ni}$ and $^{208}\mathrm{Pb}$ at near-barrier energy

Author: Emanuele Strano¹

Co-authors: ATHENA PAKOU ²; Alessandra Guglielmetti ³; Alfonso Boiano ⁴; Christian Manea ¹; Ciro Boiano ³; Concetta Parascandolo ¹; Cosimo Signorini ¹; Dimitra Pierroutsakou ⁴; Domenico Torresi ¹; Francesca Soramel ¹; Marco La Commara ⁴; Marco Mazzocco ¹; Marino Nicoletto ¹; Mario Sandoli ⁴; Nicola Toniolo ⁵; Paolo Di Meo

 ^{1}PD

² UNIVERSITY OF IOANNINA

 3 MI

 4 NA

⁵ LNL

Corresponding Author: emanuele.strano@pd.infn.it

Elastic scattering experiments provide a first information on the overall reactivity of an exotic projectile. We have recently undertaken a research program aimed at measuring the ¹⁷O elastic scattering process from different targets, being ¹⁷O ($S_n = 4.143$ MeV) the mirror nucleus of the weakly-bound and radioactive ¹⁷F ($S_p = 0.600$ MeV).

The experiment was performed at the Laboratori Nazionali di Legnaro with an ¹⁷O beam impinging on a ⁵⁸Ni (150 μ g/cm²) target at 2.5-MeV steps from 42.5 to 55 MeV and on a ²⁰⁸Pb (200 μ g/cm²) target at 5 energies in the interval 78-87 MeV.

We used three modules of the EXPADES detector array. Two 300- μ m thick Double Sided silicon Strip Detectors (DSSSDs) were placed symmetrically to the beam axis to cover the angular range $\theta_{lab} = [36^{\circ}-74^{\circ}]$. A DSSSD telescope (40+300 μ m) was placed at backward angles to cover the range $\theta_{lab} = [95^{\circ}-125^{\circ}]$. The results were analyzed within the framework of the optical model to extract the reaction cross sections.

Quite unexpectedly, the reaction cross sections, after being scaled for the different projectile atomic number, result to be larger for the stable well-bound ¹⁷O rather than for the weakly-bound radioactive ¹⁷F. Therefore, we can conclude that for the pair ¹⁷O-¹⁷F nuclear structure effects play a more

crucial role than the projectile binding energy in the reaction dynamics at Coulomb barrier energies.