A closer look at background events in the FDIRC

Background/FullSim meeting, July 16th 2012 07/23: slides updated after bug fix

Nicolas Arnaud, Martino Borsato

Introduction

- Focus on the RadBhabha samples
 - 'full' and 'Tungsten4.5cm_full'
- Goal: to go beyond the mean background rate / sector
 - See Alejandro's recent talks, among which the Elba one
- Space and time structure of the background events
 - Uniform, burst-like, etc.
- The ultimate goal would be to be able to simulate realistic background events to test the degradation of the FDIRC performances with high background
 - Some studies were done in BaBar (~2006): no significant effect seen
 - Still a long road ahead for the SuperB FDIRC...
- 07/23 update
 - Bug in the previous version of the code: arrays too short to read correctly all the data coming from bc with very high number of hits in the FDIRC

FDIRC hits per bunch crossing (bc)

- 'Tungsten4.5cm_full' sample
- Hits from optical photons in MaPMT active areas
 - Using 'blindly' Alejandro's code to associate hits with FDIRC pixels
- In average about 2 hits / bc for the whole FDIRC!
 - bc frequency is making the rate!
- Tail extending up to 100's of hits / bc
 - Origin!?
- 9890 bc total, ~20255 hits total
 - each event with ~100 hits accounts for 0.5% of the total background

Zoom on the tail

• Cut on the number of hits in the FDIRC

Same as previous page

More than 10 hits 3.5% of the events 49% of the hits

More than 15 hits 1.9% of the events 39% of the hits

• Events with the highest number of hits are localized on a sector / on a pixel

Looking at one event from the tails

Looking at one event from the tails (cont'd)

Looking at one event from the tails (cont'd)

- I would conclude that these photons are Cherenkov photons generated by low energy electron and positron created inside the FBLOCK
- Similar conclusions for an handful of events looked at in details

Next

- These events are likely responsible for the rate variations between sectors observed by Alejandro
 - Cutting them away 'blindly' makes the rate histogram much flatter
 - → Do we expect any RadBhabha-related azimuthal dependence?
- Understand how the MaPMT and the front-end electronics (FEE) will react to these well-localized bursts of hits
- Superimpose individual bunch crossings separated by 4.2 ns each to see what a real background event looks like given the FEE acquisition window
- Look at other background samples
 - These events seem absent from the pair sample (TBC)
- Suggestions more than welcome...
- → A few more plots based on the truth information
 - The following slides have not been modifed.
 - → They may be partly affected by the bug which is now fixed
- Added on 07/23: ~3300 hits (~16%) come from particles which are created exactly (distance = 0) where the hit is detected. ??????

'Genealogy' of all particles hitting the FDIRC MaPMT plane

More on the creation vertices (all hits)

Creation vertices of the particles hitting the FDIRC

Creation vertices of the optical γ hitting the FDIRC

Hits on the FDIRC plane (sector averaged)

