Recent results on solar neutrinos with Borexino

PHYSUN – LNGS, 9 Oct 2012 Barbara Caccianiga-INFN Milano (on behalf of the Borexino collaboration)

Outlook

Borexino has started taking data in May 2007 and given since then many important results on solar neutrinos, geo-neutrinos, search for rare events;

In this presentation I will focus on the results concerning solar neutrinos

- ⁷Be neutrinos and their day-night asimmetry;
- ⁸B neutrinos;
- pep neutrinos and limits on CNO neutrinos;
- Global analysis of Borexino data;

Solar neutrinos

Most recent update: Serenelli, Haxton and Pena-Garay arXiV:1104.1639

pp CYCLE: ~99% of the sun energy

J. Bahcall

Astrophysics:

Open issues: solar metallicity controversy

•Metallicity (the abundance of elements heavier than He) is used as input in the Standard Solar Model;

•The neutrino fluxes depend on it; •Differences as large as 30-40% (for CNO);

•Differences of ~9% for ^Be ν

Neutrino oscillations:

Precision measurements of solar neutrino sources at low energies probe P_{ee} in the vacuum to matter transition region which is sensitive to new physics

Sources	$\Phi(\nu \sec^{-1} \mathrm{cm}^2)$	$\Phi(\nu \sec^{-1} \mathrm{cm}^2)$	Difference
	<pre>high-metallicity[?],[?]</pre>	low-metallicity[?],[?]	%
pp	$5.98(1\pm0.006)\times10^{10}$	$6.03(1\pm0.006)\times10^{10}$	0.8
pep	$1.44(1\pm0.012)\times10^{8}$	$1.47(1\pm0.012)\times10^{8}$	2.1
hep	$8.04(1\pm0.300)\times10^3$	$8.31(1\pm0.300)\times10^3$	3.3
^{7}Be	$5.00(1\pm0.070)\times10^9$	$4.56(1\pm0.070)\times10^9$	8.8
^{8}B	$5.58(1\pm0.140)\times10^{6}$	$4.59(1\pm0.140)\times10^{6}$	17.7
^{13}N	$2.96(1\pm0.140)\times10^{8}$	$2.17(1\pm0.140)\times10^{8}$	26.7
¹⁵ O	$2.23(1\pm0.150)\times10^{8}$	$1.56(1\pm0.150)\times10^{8}$	30.0
^{17}F	$5.52(1\pm0.170)\times10^{6}$	$3.40(1\pm0.160)\times10^{6}$	38.4

•Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639 •High metallicity GS98 = Grevesse et al.S. Sci. Rev. 85,161 ('98); •Low metallicity AGS09 = Asplund, et al, A.R.A.&A. 47(2009)481

Solar neutrino oscillations before Borexino

•Solar neutrinos undergo oscillations in their path from Sun to Earth; •Preferred region of the oscillation parameter space is the so-called "LMA solution": $\Delta m^2 = 7.6 \times 10^{-5} \text{ eV}^2$; tg² $\theta = 0.468$

Borexino

•Main goal: detecting low energies solar neutrinos, in particular ⁷Be neutrinos; •Detection principle: scattering of neutrinos on electrons $v_x + e^- \rightarrow v_x + e^-$ •Detection technique: large mass of organic liquid scintillator; •Technique advantages: high light-yield (higher than Cerenkov) •Technique disadvantages: no directional information (unlike Cerenkov);

Signal is indistinguishable from background: high radiopurity is a MUST!

- The expected rate of solar neutrinos in 100tons of BX scintillator is ~50 counts/day which corresponds to ~ 5 10⁻⁹ Bq/Kg;
- Just for comparison:
 - Natural water is ~ 10 Bq/Kg in 238 U, 232 Th and 40 K
 - Air is ~ 10 Bq/m³ in ³⁹Ar, ⁸⁵Kr and ²²²Rn
 - Typical rock is ~ 100-1000 Bq/m³ in 238 U, 232 Th and 40 K

BX scintillator must be 9/10 order of magnitude less radioactive than anything on earth!

Borexino

Core of the detector: 300 tons of liquid scintillator contained in a nylon vessel of 4.25 m radius (PC+PPO);

1st shield: 1000 tons of ultra-pure buffer liquid (pure PC) contained in a stainless steel sphere of 7 m radius;

2214 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator;

2nd shield: 2000 tons of ultra-pure water contained in a cylindrical dome;

200 PMTs mounted on the SSS pointing outwards to detect light emitted in the Water * by muons crossing the detector;

Only the innermost part of the scintillator is considered in the analysis (FV selection), in order to further reduce the external background.

Background suppression: 15 years of work

- Internal background: contamination of the scintillator itself (²³⁸U, ²³²Th, ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - Solvent purification (pseudocumene): distillation, vacuum stripping with low Argon/Kripton N2 (LAKN);
 - Fluor purification (PPO): water extraction, filtration, distillation, N₂ stripping with LAKN;
 - Leak requirements for all systems and plants < 10⁻⁸ mbar⋅ liter/sec;

• External background: γ and neutrons from surrounding materials

- Detector design: concentric shells to shield the inner scintillator;
- Material selection and surface treatement;
- Clean construction and handling;

Background suppression: achievements

•Contamination from 238 U and 232 Th chain are found to be in the range of ~10⁻¹⁷ g/g and ~5x×10⁻¹⁸ g/g respectively;

•More than one order of magnitude better than specifications!

•Three backgrounds out of specifications: ²¹⁰Po, ²¹⁰Bi and ⁸⁵Kr.

Be7 neutrinos and their day-night asymmetry

Data after 750 days (normalized to 100tons)

Data after 750 days (normalized to 100tons)

• Residual background components (⁸⁵Kr, ²¹⁰Bi, ²¹⁰Po, ¹¹C);

- Two independent methods to describe the shape of the components of the spectral fit: a MonteCarlo based one and an analytical one;
- Fit performed on the spectrum with and without statistical subtraction of the ²¹⁰Po alpha component;

⁷Be - rate (862keV line) = 46.0 \pm 1.5 (stat) counts/(day \times 100tons)

Systematic error

- Main improvement on the systematic error with respect to previous measurement is on Fiducial Volume and Energy response;
- This was possible thanks to the extensive calibration campaigns with radioactive sources performed between 2008 and 2009;

Source	[%]		
Trigger efficiency and stability	< 0.1		
Live time	0.04		
Scintillator density	0.05		
Sacrifice of cuts	0.1		
Fiducial volume	$^{+0.5}_{-1.3}$	←	Previosly ±6%
Fit methods	2.0		D 1 . CO/
Energy response	2.7	-	Previosly $\pm 6\%$
Total Systematic Error	$^{+3.4}_{-3.6}$		

 $46.0 \pm 1.5(\text{stat})^{+1.5}_{-1.6}(\text{syst}) \text{ counts}/(\text{day} \cdot 100 \text{ ton})$

Implications on metallicity controversy

Implications on other solar neutrino sources

•The result of BX +solar experiments +solar luminosity constraint allows to precisely determine pp flux and set a limit on CNO flux

 $\begin{aligned} & \bullet f_{pp} = \Phi_{pp} / \Phi_{pp}(\text{SSM}) \\ & f_{\text{CNO}} = \Phi_{\text{CNO}} / \Phi_{\text{CNO}}(\text{SSM}) \end{aligned}$

$$f_{pp} = 1.013^{+0.003}_{-0.010}$$

$$f_{CNO} < 2.5 \text{ at } 95\% \text{ C.L.}$$

Implications on oscillation parameters

⁷ Be rate (862keV line) = 46.0 ± 1.5 (stat) ^{+1.5} _{-1.6} (sys)cpd / 100tons)			
Hypothesis	Expected rate		
	(cpd/100t)	The hypothesis of	
No oscillation +High Metallicity	74±4	no-oscillations is	
No oscillation + Low Metallicity	67±4	rejected at 5o	

Implications on v_e survival probability P_{ee}

Implications on oscillation parameters

⁷ Be rate (862keV line)=46.0±1.5 (stat) ^{+1.5} (sys)cpd/100tons)			
Hypothesis	Expected rate (cpd/100t)	The hypothesis of	
No oscillation +High Metallicity	74±4	no-oscillations is	
No oscillation + Low Metallicity	67±4	rejected at 5σ	

Implications on v_e survival probability P_{ee}

 $P_{ee} = 0.51 \pm 0.07$ (E=862 keV)

Note that Borexino total error (4.6%) is now smaller than the theoretical uncertainty on the 7Be flux prediction from SSM (7%);

•In the MSW framework, the neutrino rate at Night (when neutrinos cross Earth) could be significantly larger than the rate during the Day, because of regeneration effect;

In the MSW frame A_{dn} depends on the value of the oscillation parameters and on the neutrino energy. •For the ⁷Be energies and for parameters in the LMA region A_{dn} is expected to be very small (~0);

•In principle, A_{dn} could be different from zero for different values of the oscillation parameters: for example for the so-called LOW solution- Δm^2 (10⁻⁸- 2×10⁻⁶) eV² - A_{dn} would be between 10% and 80%;

•Some exotic models, like Mass Varying neutrinos, foresee a large Day/Night asymmetry of the opposite sign (-23%)

⁷Be neutrinos: day-night asymmetry

Divide spectrum in day and night (Day=360.35 d and Nights=380.63 d);
Subtract day from night spectrum;
Fit the residual spectrum with the ⁷Be shoulder + constant;
It is consistent with 0;

 $A_{dn} = 0.001 \pm 0.012(stat) \pm 0.007(sys)$ No asymmetry within errors

Source of error	Error on A_{dn}
Live-time	$< 5 \cdot 10^{-4}$
Cut efficiencies	0.001
Variation of ²¹⁰ Bi with time	± 0.005
Fit procedure	± 0.005
Total systematic error	0.007

⁷Be neutrinos: day-night asymmetry

Low solution excluded at more than 8₅ by Borexino data only Strong confirmation of the LMA without relying on anti-neutrino kamLAND data

- B. Cleveland et al. (the Homestake collaboration), Astrophys. J., 496, 505 (1998).
- J. Abdurashitov et al. (the SAGE collaboration), Phys. Rev. C, 80, 015807 (2009).
- F. Kaether et al. (the GALLEX collaboration), Phys. Lett. B, 685, 47 (2010).
- B. Aharmim et al. (the SNO collaboration), Phys. Rev. Lett., 101, 111301 (2008).
- B. Aharmin et al. (the SNO collaboration), Phys. Rev. C, 81, 055504 (2010).
- J. Hosaka et al. (the Super Kamiokande collaboration), Phys. Rev. D, 73, 025503 (2006).
- K. Abe et al. (the Super Kamiokande collaboration), Phys. Rev. D, 83, 052010 (2011).

⁸B solar neutrinos

⁸B neutrinos with low energy threshold ($T_e > 3$ MeV)

2

3

Radius [m]

4

5

 10^{-} 0

Analysis performed on 488 live days of data-taking (from Jul2007 to Aug 2009)

•	Muon rejection:	Cut	Counts 3.0–16.3 MeV	Counts 5.0–16.3 MeV
 Muon rejection; Fiducial Volume cut (R<3m) Rejection of cosmogenics by cutting 6.5 seconds after the muons (reduction of detecting efficiency by 29.4%); 		All counts Muon and neutron cuts FV cut Cosmogenic cut ¹⁰ C removal ²¹⁴ Bi removal ²⁰⁸ Tl subtraction	$ \begin{array}{r} 1932181 \\ 6552 \\ 1329 \\ 131 \\ 128 \\ 119 \\ 90 \pm 13 \\ 70 \pm 12 \\ \end{array} $	$ 1824858 \\ 2679 \\ 970 \\ 55 \\ 55 \\ 55 \\ 55 \\ 57 \\ 7 \\ 47 + 2 7 $
s 1	$0^2 = -\mathbf{D}_{ata}$	The subtractionResidual subtractionFinal sampleBPS09(GS98) 8 B ν DDS00(ACS05) 8 D	79 ± 13 75 ± 13 75 ± 13 86 ± 10 72 ± 7	47 ± 8 46 ± 8 46 ± 8 43 ± 6 26 ± 4
Counts / 6 cm / 345.3 day	Fit function Internal events Surface events External events	 Residual extension R<3m contamicpd/100tons 	ernal contamin ination (6.4±0	ation for .2)x10 ⁻³

⁸B neutrinos with low energy threshold ($T_e > 3$ MeV)

Rate of ⁸B neutrinos (E>3 MeV) = 0.22 ± 0.04 (stat) ± 0.01 (sys) cpd/100t

	3.0–16.3 MeV	5.0–16.3 MeV
Rate [cpd/100 t] Φ_{exp}^{ES} [10 ⁶ cm ⁻² s ⁻¹] $\Phi_{exp}^{ES}/\Phi_{th}^{ES}$	$0.22 \pm 0.04 \pm 0.01$ $2.4 \pm 0.4 \pm 0.1$ 0.88 ± 0.19	$\begin{array}{c} 0.13 \pm 0.02 \pm 0.01 \\ 2.7 \pm 0.4 \pm 0.2 \\ 1.08 \pm 0.23 \end{array}$

First Evidence of pep Solar Neutrinos by Direct Detection in Borexino PRL 108, 051302 (2012);

 The importance of this result induced APS to highlight the paper with a Synopsis on the Physics website

http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.108.051302

Pep solar neutrinos

- Monocromatic line at E=1.44MeV;
- Ideal to test P_{ee} in the transition region;

CNO solar neutrinos

- Never directly observed;
- Optimal to study the solar metallicity controversy

Sources	$\Phi(\nu \text{ sec}^{-1} \text{ cm}^2)$	$\Phi(\nu \text{ sec}^{-1} \text{ cm}^2)$	Difference
	high-metallicity[?],[?]	low-metallicity[?],[?]	%
pp	$5.98(1\pm0.006)\times10^{10}$	$6.03(1\pm0.006)\times10^{10}$	0.8
рер	$1.44(1\pm0.012)\times10^{8}$	$1.47(1\pm0.012)\times10^{8}$	2.1
hep	$8.04(1\pm0.300)\times10^3$	$8.31(1\pm0.300)\times10^3$	3.3
^{7}Be	$5.00(1\pm0.070)\times10^9$	$4.56(1\pm0.070)\times10^9$	8.8
${}^{8}B$	$5.58(1\pm0.140)\times10^{6}$	$4.59(1\pm0.140)\times10^{6}$	17.7
^{13}N	$2.96(1\pm0.140)\times10^{8}$	$2.17(1\pm0.140)\times10^{8}$	26.7
^{15}O	$2.23(1\pm0.150)\times10^{8}$	$1.56(1\pm0.150)\times10^{8}$	30.0
^{17}F	$5.52(1\pm0.170)\times10^{6}$	$3.40(1\pm0.160)\times10^{6}$	38.4

Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639
High metallicity GS98 = Grevesse et al.S. Sci. Rev. 85,161 ('98);
Low metallicity AGS09 = Asplund, et al, A.R.A.&A. 47(2009)481;

Backgrounds

- Difficulties of this analysis:
 - Very tiny rates (few counts /day/100tons);
 - Backgrounds: ²¹⁰Bi and ¹¹C;

It is possible to suppress the ¹¹C background by

- three-fold coincidence;
- pulse-shape discrimination;

Three-fold coincidence technique:

Space and time veto after the coincidence of a muon and a neutron

Optimal choice:

- Eliminates 91% of ¹¹C;
- Preserve 48.5% of livetime;

 ¹¹C from 27 counts/day/100tons to 2.5 counts/day/100tons

e+/e- pulse shape discrimination (PRC 83-015522 (2011))

• Based on the small differences in the time distribution of the scintillation signal coming from the ortho-positronium finite lifetime and the presence of annihilation γ rays.

Multivariate analysis:

Fit simultaneously:

- Radial distribution of events;
- Energy distribution of events;
- Pulse-shape distribution of events;

Both pep and CNO rates are parameters of the fit

Energy spectrum

Source	[%]
Fiducial exposure	+0.6 -1.1
Energy response	± 4.1
²¹⁰ Bi spectral shape	+1.0
Fit methods	± 5.7
Inclusion of independent ⁸⁵ Kr estimate	+3.9 -0.0
γ rays in pulse-shape distributions	± 2.7
Statistical uncertainties in pulse shape distributions	+5
Total systematic uncertainty	±10

Electron neutrino survival probability

MSW-LMA prediction band is the 1σ range for oscillation parameters given in K.Nakamura et al. (Particle Data Group), J.Phys.G 37, 075021 (2010).

Limit on CNO flux

- ²¹⁰Bi backround is hard to disentangle from CNO signal → only a limit can be quoted;
- Fixing the pep rate at the SSM prediction;
- CNO neutrino flux: < 7.9 (<7.1_{stat only}) x10⁸ v/cm² s (95% C.L);
- Result consistent with both high and low metallicity rates;

Summary and conclusions

Implications of Borexino data on solar physics

- Borexino has provided a real-time spectroscopy of solar neutrinos:
 - Precise measurement of ⁷Be neutrino rate and null day/night asymmetry;
 - Measurement of ⁸B neutrino rate with the lowest threshold ($T_e > 3 \text{ MeV}$);
 - First direct evidence of pep solar neutrinos;
 - Most stringent limit on the CNO neutrino flux;
- Unfortunately Borexino measurement cannot discriminate between high and low metallicity;

Analysis with Borexino data only

⁷Be rate only

Implications of Borexino data on oscillation parameters

Analysis with Borexino data only

⁷Be+⁸B rate +ADN

Analysis with solar data and Borexino data

Strong confirmation of the LMA without relying on anti-neutrino kamLAND data

Implications of Borexino data on oscillation parameters

Analysis including all available information on solar+ kamLAND

Perspectives

• We are not stopping here! Getting ready for Borexino Phase II:

- 6 purification cycles performed between May 2010 and August 2011
- Exceptional levels of radiopurity: ⁸⁵Kr rate consistent with 0, ²¹⁰Bi reduced by a factor ~4, unprecedented levels of U and Th;

• Future goals:

- pp neutrinos (very challenging!)
- Improve precision on ⁷Be neutrino rate (3% ?)
- Improve significance of pep signal (3σ or more)
- Improve limit on CNO neutrinos (observation ?)