09-OCT-2012 @PHYSUN 2012

Yasuo Takeuchi Kobe University

Resent results of

Super-Kamiokande

Super-Kamiokande detector
 Solar neutrino analysis in SK-IV
 Recent results

Inside of SK detector (April 2006)

The Super-Kamiokande Collaboration

C. Regis,⁶ K. Abe,¹ Y. Hayato,^{1,28} K. Iyogi,¹ J. Kameda,¹ Y. Koshio,¹ Ll. Marti,¹ M. Miura,¹ S. Moriyama,^{1,28} M. Nakahata,^{1,28} S. Nakayama,¹ Y. Obayashi,¹ H. Sekiya,¹ M. Shiozawa,^{1,28} Y. Suzuki,^{1,28} A. Takeda,¹ Y. Takenaga,¹ K. Ueno,¹ T. Yokozawa,¹ H. Kaji,² T. Kajita,^{2,28} K. Kaneyuki,^{2,28,*} K. P. Lee,² K. Okumura,² T. McLachlan,² L. Labarga,³ E. Kearns,^{4,28} J. L. Raaf,⁴ J. L. Stone,^{4,28} L. R. Sulak,⁴ M. Goldhaber,^{5,*} K. Bays,⁶ G. Carminati,⁶ W. R. Kropp,⁶ S. Mine,⁶ A. Renshaw,⁶ M. B. Smy,^{6,28} H. W. Sobel,^{6,28} K. S. Ganezer,⁷ J. Hill,⁷ W. E. Keig,⁷ J. S. Jang,^{8,†} J. Y. Kim,⁸ I. T. Lim,⁸ J.B. Albert,⁹ K. Scholberg,^{9,28} C. W. Walter,^{9,28} R. A. Wendell,⁹ T. Wongjirad,⁹ T. Ishizuka,¹⁰ S. Tasaka,¹¹ J. G. Learned,¹² S. Matsuno,¹² S. N. Smith,¹² T. Hasegawa,¹³ T. Ishida,¹³ T. Ishii,¹³ T. Kobayashi,¹³ T. Nakadaira,¹³ K. Nakamura,^{13,28} K. Nishikawa,¹³ Y. Oyama,¹³ K. Sakashita,¹³ T. Sekiguchi,¹³ T. Tsukamoto,¹³ A. T. Suzuki,¹⁴ Y. Takeuchi,^{14,28} K. Ieki,¹⁵ M. Ikeda,¹⁵ H. Kubo,¹⁵ A. Minamino,¹⁵ A. Murakami,¹⁵ T. Nakaya,^{15,28} Y. Fukuda,¹⁶ K. Choi,¹⁷ Y. Itow,^{17,18} G. Mitsuka,¹⁷ M. Miyake,¹⁷ P. Mijakowski,¹⁹ J. Hignight,²⁰ J. Imber,²⁰ C. K. Jung,²⁰ I. Taylor,²⁰ C. Yanagisawa,²⁰ H. Ishino,²¹ A. Kibayashi,²¹ T. Mori,²¹ M. Sakuda,²¹ J. Takeuchi,²¹ Y. Kuno,²² S. B. Kim,²³ H. Okazawa,²⁴ Y. Choi,²⁵ K. Nishijima,²⁶ M. Koshiba,²⁷ Y. Totsuka,^{27,*} M. Yokoyama,^{27,28} K. Martens,²⁸ M. R. Vagins,^{28,6} S. Chen,²⁹ H. Sui,²⁹ Z. Yang,²⁹ H. Zhang,²⁹ K. Connolly,³⁰ M. Dziomba,³⁰ and R. J. Wilkes³⁰

1 Kamioka Observatory, ICRR, Univ. of Tokyo, Japan 2 RCCN, ICRR, Univ. of Tokyo, Japan 3 University Autonoma Madrid, Spain 4 Boston University, USA 5 Brookhaven National Laboratory, USA 6 University of California, Irvine, USA 7 California State University, Dominguez Hills, USA 8 Chonnam National University, Korea 9 Duke University, USA 10 Junior College, Fukuoka Inst. of Tech., Japan 11 Gifu University, Japan 12 University of Hawaii, USA 13 KEK, Japan 14 Kobe University, Japan 15 Kyoto University, Japan 16 Miyagi University of Education, Japan 17 STE, Nagoya University, Japan 18 KMI, Nagoya University, Japan

19 National Center for Nuclear Research, Poland

- 20 SUNY, Stony Brook, USA 21 Okayama University, Japan
- 22 Osaka University, Japan
- 23 Seoul National University, Korea
- 24 Shizuoka University of Welfare, Japan
- 25 Sungkyunkwan University, Korea
- 26 Tokai Úniversity, Japan 27 University of Tokyo, Japan
- 28 Kavli IPMU, Univ. of Tokyo, Japan
- 29 Tsinghua University, China
- 30 University of Washington, USA

From PRD86. 012006 (2012)

Super-Kamiokande detector

Inner Detector (ID) PMT: ~11100 (SK-I,III,IV), ~5200 (SK-II) Outer Detector (OD) PMT: 1885

Typical low-energy event

Resolutions (for E_{total}=10MeV electrons) (software improvement) Energy: 14% Vertex: 87cm Direction: 26° SK-I Energy: 14% Vertex: 55cm Direction: 23° SK-III 4

<u>Solar neutrino analysis</u> <u>in SK-IV</u>

Recent progresses

- Update live time:
 - 2008/10-2012/03 SK-IV 1069 days (cf. SK-I 1496 days)
- All the conventional event selection criteria are optimized in SK-IV
- Introduced a new event selection parameter
 Multiple Scattering Goodness
- Systematic uncertainties are updated in SK-IV
- Obtained SK-IV initial preliminary results (
- Carried out an oscillation analysis with SK-IV data
- Fixed a mistake in SK-III flux calculation
- Preparing a paper on SK-IV solar v results

Mistake in SK-III flux calculation

- The energy dependence in the v-e differential cross section was accidentally eliminated only for the SK-III flux calculation in PRD83, 052010 (2011).
- The expected total flux was correct, but the ⁸B energy spectrum shape was wrong.
- Fixing this problem changes SK-III ⁸B flux value in ES reaction from (wrong) 2.32 to (correct) 2.40 [x10⁶/cm²/sec] in E_{total}=5.0-20MeV.
- This problem is fixed in this analysis. (We are preparing an errata.)

7

Multiple Scattering Goodness (MSG)

May 2012

To reduce very low-energy background events (²¹⁴Bi, etc.)

- Lower energy electrons will incur more multiple scattering and will have more unit vectors pointing along different directions, giving a lower goodness
- Higher energy electrons will scatter less and will have unit vectors in better agreement, resulting in higher goodness
- Although the ²¹⁴Bi decay electrons (majority of low-energy background) fluctuate up above 5.0 MeV in energy, they truly have energy <3.27 MeV(total) and should have more multiple scattering than true 5.0 MeV electrons, and therefore a lower MSG</p>

Better signal-to-noise ratio in the higher MSG data set.
 Signal extraction with MSG is used below 7.5 MeV(kin) in SK-III and SK-IV in the energy spectrum analysis and the oscillation analysis.

Systematic error from MSG

- The MSG distributions of data and MC simulation are compared using LINAC, then the difference is obtained as a scaling factor (LINAC MC/data ratio).
- The scaling factor is applied to solar neutrino MC in the solar signal extraction, then estimate possible flux value changes.

Systematic errors from MSG in oscillation analysis

	3.5-4.0 MeV _{kin}	4.0-5.5 MeV _{kin}	5.5-7.5 MeV _{kin}
SK-III		0.3%	1.7%
SK-IV	0.4%	0.3%	1.7%

Preliminary

- Above 5.0MeV(kin), fiducial volume is 22.5kton
- Below 5.0 MeV(kin), tight fid. vol. cut is applied to reduce events from detector wall.

Reduction steps are similar as SK-III, but selection criteria are optimized for SK-IV.

Systematic uncertainties on ⁸B flux

	SK-IV Flux	SK-III Flux	SK-I Flux
Source	(4.0-19.5MeV(kin))	(4.5-19.5MeV(kin))	(4.5-19.5MeV(kin))
	Preliminary	(PRD83, 052010)	(PRD73,112001)
Energy Scale	±1.2%	±1.4%	± 1 C0/
Energy resolution	±0.15%	±0.2%	工1.6%
8B spectrum	±0.33%	±0.2%	+1.1/-1.0%
Trigger efficiency	±0.1%	±0.5%	+0.4/-0.3%
Vertex shift	±0.17%	±0.54%	±1.3%
Reduction	±0.6%	±0.9%	+2.1/-1.6%
Spallation dead time	±0.1%	±0.2%	±0.2%
Background shape	±0.1%	±0.1%	±0.1%
Angular resolution	±0.36%	±0.67%	
Signal extract method	±0.7%	±0.7%	\downarrow \perp ±1.2%
Cross section	±0.5%	±0.5%	±0.5%
Total	±1.7%	±2.1%	+3.5/-3.2%

The total systematic error on total flux in SK-IV is reduced by front-end electronics upgrade, precise calibrations, and software improvements

Recent solar neutrino results

See also following reports:

- M. Smy, "Results from Super-Kamiokande" @NEUTRINO2012
- Y. Koshio, "Solar neutrino results from Super-Kamiokande"
 @ICHEP2012

H. Sekiya, "Super-Kamiokande low-energy results" @NOW2012

SK-IV solar neutrino flux

- Total live time : 1069.3 days (2008/10-2012/03)
- Energy region for flux: E_{kinetic} = 4.0 19.5 MeV
- Winter06 ⁸B spectrum is used.
- ⁸B Flux in ES reaction, without v oscillation:
 - SK-IV: 2.34+/-0.03(stat.)+/-0.04(syst.) [x10⁶/cm²/s]
 - SK-I: 2.38+/-0.02(stat.)+/-0.08(syst.)
 4.5 19.5 MeV(kin)
 - SK-II: 2.41+/-0.05(stat.)+0.16/-0.15(syst.) 6.5 19.5 MeV(kin)
 - SK-III: 2.40+/-0.04(stat.)+/-0.05(syst.) 4.5 19.5 MeV(kin) (SK-I,II are recalculated with the Winter06 ⁸B spectrum.) (The problem in SK-III is fixed.)
- 3.5-4.0MeV(kin) in SK-IV is used for oscillation analysis.
 - Energy threshold is lowest in SK-IV

SK-I: PRD73, 112001 SK-II: PRD78, 032002 SK-III: PRD83, 052010

SK-IV solar neutrino flux

Preliminary

SK-IV: low-energy solar signal

Data set for oscillation analysis

- SK
 - SK-I 1496 days, spectrum 4.5-19.5MeV(kin) + D/N : E ≥ 4.5MeV(kin)
 - SK-II 791 days, spectrum 6.5-19.5MeV(kin) + D/N : E ≥ 7.0MeV(kin)
 - SK-III 548 days, spectrum 4.0-19.5MeV(kin) + D/N : E ≥ 4.5MeV(kin)
 - SK-IV 1069 days, spectrum 3.5-19.5MeV(kin) + D/N : E ≥ 4.5MeV(kin)
- SNO : SNO combined (arXiv:1109.0763) (NC flux = (5.25+/-0.20) 10⁶ cm⁻²s⁻¹)
- Radiochemical : Cl, Ga
 - Ga rate: 66.1+/-3.1 SNU (All Ga global) (PRC80, 015807(2009))
 - Cl rate: 2.56+/-0.23 SNU (Astrophys. J. 496 (1998) 505)
- Borexino : PRL107, 141302 (2011)
- KamLAND : PRL 100, 221803 (2008)
- ⁸B spectrum : Winter (2006)
- ⁸B and *hep* flux free, if not mentioned.

updates since our previous oscillation analysis (PRD83, 052010 (2011))

⁸B energy spectrum

UPER

⁸B energy spectrum (SK combined)

 $sin^2\theta_{13}$ is fixed at 0.025

Preliminary

⁸B flux is constrained to 5.25+/-0.20 [× 10⁶/cm²/s] in the flux constrained analysis.

 $sin^2\theta_{13}$ is fixed at 0.025

Preliminary

Preliminary

Consistent with PDG average (=reactor experiments)

Day-Night variation

Preliminary

- Un-binned Day-Night analysis (PRD69, 011104) is applied in each SK phase, then obtained Day-Night asymmetry values (=A_{DN}) from fitted Day-Night amplitude parameter.
 - Consider energy and zenith angle dependence of event rate variation.

Day/Night amplitude fits as a function of Δm²

Preliminary

SK-I/II/III/IV Combine Day/Night Asymmetry

<u>Day/Night amplitude fits</u> <u>as a function of sin² θ_{12} </u>

Preliminary

SK-I/II/III/IV Combine Day/Night Asymmetry

- SK-IV is running with the lowest energy threshold in SK
 - Trigger efficiency: >99%@4.0MeV(kin), ~86%@3.5MeV(kin)
 - The energy threshold will be lowered in near future.
 - The initial results from SK-IV are obtained in May 2012.
 - Observed ⁸B fluxes are consistent among SK phases
 - ~7 sigma signal in 3.5-4.0MeV(kin) region
 - Performed an oscillation analysis with SK-IV data Preliminary

Solar global: $\Delta m^2 = (4.9+1.4/-0.5) [\times 10^{-5} eV^2]$ $sin^2 \theta_{12} = 0.310+0.014-0.015$ Solar global + KamLAND: $\Delta m^2 = (7.4+/-0.2) [\times 10^{-5} eV^2]$ $\sin^2 \theta_{12} = 0.304+/-0.013$

- Possible spectrum distortion: 1.1 sigma to 1.9 sigma
- Day-Night asymmetry: consistent with zero at 2.3 sigma
- Δm_{21}^2 : some tension between solar global and KamLAND