

LNGS - 10/10/2012

Bounds on θ_{13} & θ_{14} from low energy neutrino data

Antonio Palazzo

Max-Planck-Institut für Physik (Munich)

1) Solar vs as harbingers of non-zero θ_{13}

2) Solar vs as a probe of sterile neutrinos

3) Solar vs as a probe of the MSW dynamics

Tightly interconnected topics, as we will see ...

Solar vs as harbingers of non-zero θ_{13}

Why a non-zero θ_{13} is so important

$$J = \Im[U_{\mu3}U_{e2}U_{\mu2}^*U_{e3}^*]$$

The Jarlskog invariant J gives a parameterization-independent measure of the CP violation induced by the complexity of U

In the standard parameterization the expression of J is:

$$J = \frac{1}{8}\sin 2\theta_{12}\sin 2\theta_{23}\sin 2\theta_{13}\cos \theta_{13}\sin \delta$$

Only if all three $\theta_{ij} \neq 0$ we can have CP violation

quark-sector: $J_{CKM} \sim 3 \times 10^{-5}$, much smaller than $|J|_{max} = \frac{1}{6\sqrt{3}} \sim 0.1$ lepton-sector: |J| may be as large as 3×10^{-2} (it will depend on δ)

Historical result established by CHOOZ in 1998

$$P_{ee}^{\text{OSC}} = 1 - 4U_{e3}^2 (1 - U_{e3}^2) \sin^2 \left(\frac{\Delta m^2}{4E}L\right)$$
$$P_{ee}^{\text{exp}} \simeq 1 \qquad U_{e3}^2 = \sin^2 \theta_{13}$$

Exclusion plot in the $(\Delta m^2, \theta_{13})$ plane

 Δm^2 scale <u>now</u> Atm Set with precision by +LBL

... since then...

The 3v global analyses have played an increasingly relevant role in pinning down θ_{13} , constantly improving their sensitivity.

They have first corroborated (atm. analyses) and then strengthened (sol+Kam analyses) the CHOOZ upper limit.

Hence, in 2008 it was not surprising that they started to be competitive, reaching values of θ_{13} below the CHOOZ limit.

What instead – pleasantly – surprised us was that, for the first time, the analyses pointed towards a non-zero value of this parameter...

2008: Global 3v analysis

The global analysis provided a preference for $\theta_{13} > 0$ at 90% C.L. Fogli, Lisi, Marrone, A.P., Rotunno, PRL 101, 141801 (2008), arXiv:0806.2649, hep-ph.

2008: First indication of non-zero θ_{13}

Fogli, Lisi, Marrone, A.P., Rotunno, Phys. Rev. Lett. 101, 141201 (2008)

Indication irrefutably confirmed in 2012

Daya Bay

9

Parameter estimates as of June 2012

(includes Neutrino 2012 results)

A closer look to the solar hint of θ_{13} >0 shows that it emerged from a delicate interplay of solar and KamLAND

Solar vs are thus a very precise machine and we can trust it also when searching for non-standard physics!

11

Beyond the standard 3v paradigm

Exploring new neutrino properties

Why go beyond the standard 3v picture?

Theory

Many extensions of the SM point towards new v properties (interactions, new states,...)

Acquired knowledge

Precision on standard parameters enhances the sensitivity to any kind of perturbation

Experimental hints

Although the 3v scheme explains most of the data an increasing number of anomalies is showing up

Future data

A rich plan of new experiments will allow us to explore and chart unknown territories

The hints of light sterile neutrinos

Hint #1: The Gallium calibration anomaly

SAGE coll., PRC 73 (2006) 045805

Deficit observed in calibration performed with radioactive sources

But it could be due to overestimate of v_e + $^{71}Ga \rightarrow ^{71}Ge$ + e^- cross section

Hint #2: The reactor antineutrino anomaly

Mention et al., PRD 83 073006 (2011)

Mueller et al., PRC 83 054615 (2011) Huber, PRC 84 024617 (2011)

With new reactor fluxes deficit of all the short-baseline reactor measurements

But new calculations, like older ones, are still anchored to (one single) β -spectrum experiment (ILL)

Fitting the short-distance v_e -disappearance

Mention et al., PRD 83 073006 (2011)

 $\sin^2 2\theta_{new} \simeq 0.1$

$$\Delta m_{new}^2 \gtrsim 1 \ \mathrm{eV}^2$$

<u>Hint #3</u>: Anomalous short-distance v_e -appearance

LSND, PRL 75 (1995) 2650

Giunti and Laveder, arXiv:1107.1452

Warning:In tension with disappearance searches: $v_{\mu} \rightarrow v_{e}$ positive appearance signal incompatible with
joint $v_{e} \rightarrow v_{e}$ (positive) & $v_{\mu} \rightarrow v_{\mu}$ (negative) searchesTheory: $\sin^{2} 2\theta_{e\mu} \simeq \frac{1}{4} \sin^{2} 2\theta_{ee} \sin^{2} 2\theta_{\mu\mu} \simeq 4|U_{e4}|^{2}|U_{\mu4}|^{2}$ Experiments: $\sim \text{few \%}$ ~ 0.1 <few %

Hint #4: Cosmology favors extra radiation

CMB + LSS tend to prefer extra relativistic content ~ 2 sigma effect

[Hamann et al., PRL 105, 181301 (2010)]

Warnings:

- eV masses acceptable only abandoning standard ΛCDM (Kristiansen & Elgaroy arXiv:1104.0704, Hamann et al. arXiv:1108.4136)
- N_s>1 at BBN strongly disfavored (Mangano & Serpico PLB 701, 296, 2011)
- N_s is not specific of v_s (new light particles, decay of dark matter particles, quintessence, ...)

Can we get some information on v_s from the solar neutrino sector?

The 3+1 scheme:

From the "point of view" of the solar doublet (v_1, v_2) we expect similar sensitivity to U_{e3} & U_{e4}

VSBL v_e disappearance in a 3+1 scheme

Mention et al. arXiv:1101:2755 [hep-ex]

SAGE coll., PRC 73 (2006) 045805

In a 2ν framework:

$$P_{ee} \simeq 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m_{new}^2 L}{4E}$$

In a 3+1 scheme: $P_{ee} = 1 - 4 \sum_{j>k} U_{ej}^2 U_{ek}^2 \sin^2 \frac{\Delta m_{jk}^2 L}{4E}$ $\Delta m_{sol}^2 \ll \Delta m_{atm}^2 \ll \Delta m_{new}^2$

$$\sin^2 \theta_{new} \simeq U_{e4}^2 = \sin^2 \theta_{14}$$

3+1 scheme has several consequences: solar, atm, react., accel. We will focus on the implications for Solar (S) & KamLAND (K)

LBL v_e disappearance in a 3+1 scheme

KamLAND

Exact degeneracy between U_{e3} and U_{e4}

Solar v conversion in a 3+1 scheme

$$i\frac{d}{dx}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\\\nu_{s}\end{pmatrix} = H\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\\\nu_{s}\end{pmatrix} \qquad \qquad H = UKU^{T} + V(x)$$

$$K = \frac{1}{2E} \operatorname{diag}(k_1, k_2, k_3, k_4) \qquad k_i = \frac{m_i^2}{2E} \qquad \begin{array}{l} \text{wavenumbers} \\ \text{in vacuum} \end{array}$$

Useful to write the mixing matrix as*: $U = R_{23} S R_{13} R_{12}$ $S = R_{24} R_{34} R_{14}$

 $\theta_{14}=\theta_{24}=\theta_{34}=0$ --> S = I --> 3-flavor case

$$V = \text{diag}(V_{CC}, 0, 0, -V_{NC})$$
 MSW potential
 $V_{CC} = \sqrt{2} G_F N_e$ $V_{NC} = \frac{1}{2} \sqrt{2} G_F N_n$

* We assume U to be real but in general it can be complex due to CP phases

Change of basis:
$$\nu' = (R_{23} \, S \, R_{13})^T \, \nu = A^T \nu = R_{12} U^T$$

In the new basis: $H' = A^T H A = R_{12} K R_{12}^T + R_{13}^T S^T V S R_{13}$

The 3rd & 4th state evolve independently from the 1st & 2nd

The dynamics reduces to that of a 2×2 system

7

Diagonalization of the Hamiltonian

The 2x2 Hamiltonian is diagonalized by a 1-2 rotation

$$\tilde{R}_{12}^T H'_{2\nu} \tilde{R}_{12} = diag(\tilde{k}_1, \tilde{k}_2)$$

which defines the solar mixing angle in matter

wavenumbers in matter

 $ilde{k}_i$

 $\tilde{\theta}_{12}(x)$

The starting Hamiltonian is then diagonalized by

$$\tilde{U} = A\tilde{R}_{12}$$

$$\tilde{U}^T H\tilde{U} = diag(\tilde{k}_1, \tilde{k}_2, k_3, k_4)$$

For ν_{3} and ν_{4} (averaged) vacuum-like propagation

New MSW dynamical corrections induced by the 4th state are smaller than 1% and too small to be observable (see later).

But important new kinematical effects are present ...

For adiabatic propagation (valid for small deviations around the LMA)

$$P_{ee} = \sum_{\substack{i=1\\4}}^{4} U_{ei}^2 \tilde{U}_{ei}^2 = U_{e1}^2 \tilde{U}_{e1}^2 + U_{e2}^2 \tilde{U}_{e2}^2 + U_{e3}^4 + U_{e4}^4$$
$$P_{es} = \sum_{i=1}^{4} U_{si}^2 \tilde{U}_{ei}^2 = U_{s1}^2 \tilde{U}_{e1}^2 + U_{s2}^2 \tilde{U}_{e2}^2 + U_{s3}^2 U_{e3}^2 + U_{s4}^2 U_{e4}^2$$

Expressions for U_{ei}'s (always valid)

Expressions for U_{si} 's valid for $\theta_{24} = \theta_{34} = 0$

$$\begin{aligned} U_{e1}^2 &= c_{14}^2 c_{13}^2 c_{12}^2 \\ U_{e2}^2 &= c_{14}^2 c_{13}^2 s_{12}^2 \\ U_{e3}^2 &= c_{14}^2 s_{13}^2 \sim s_{13}^2 \end{aligned} \right\} &\sim 1 - s_{14}^2 - s_{13}^2 \qquad \qquad U_{s1}^2 = s_{14}^2 c_{13}^2 c_{12}^2 \\ U_{s2}^2 &= s_{14}^2 c_{13}^2 s_{12}^2 \\ U_{s3}^2 &= s_{14}^2 c_{13}^2 s_{12}^2 \\ U_{e3}^2 &= s_{14}^2 s_{13}^2 \sim 0 \\ U_{e4}^2 &= s_{14}^2 \qquad \qquad U_{s3}^2 = s_{14}^2 s_{13}^2 \sim 0 \\ U_{e4}^2 &= s_{14}^2 \qquad \qquad U_{s4}^2 = c_{14}^2 c_{13}^2 \sim 1 - s_{14}^2 \end{aligned}$$

The elements of \widetilde{U} are obtained replacing θ_{12} with $\widetilde{\theta}_{12}$ calculated in the production point (near the sun center)

Solar v: Two simple limit cases

$$\theta_{13} \neq 0 \quad \theta_{14} = 0 \quad (3\nu)$$

$$\begin{cases} P_{ee} = c_{13}^4 P_{ee}^{2\nu} \Big|_{V \to V c_{13}^2} + s_{13}^4 \\ P_{es} = 0 \end{cases}$$

$$\theta_{13} = 0 \quad \theta_{14} \neq 0 \quad (4v)$$

$$\begin{cases} P_{ee} = c_{14}^4 P_{ee}^{2\nu} \\ V \to V c_{14}^2 \end{cases} + s_{14}^4 \\ P_{es} \simeq s_{14}^2 P_{ee}^{2\nu} \\ V \to V c_{14}^2 \end{cases} + s_{14}^2 \end{cases}$$

$(\theta_{13}, \theta_{12})$ vs $(\theta_{14}, \theta_{12})$ constraints

$$\begin{cases} CC \sim \Phi_{\rm B} \, {\rm P}_{\rm ee} \\ {\rm NC} \sim \Phi_{\rm B} \, (1 - {\rm P}_{\rm es}) \\ {\rm ES} \sim \Phi_{\rm B} \, ({\rm P}_{\rm ee} + \, 0.15 \, {\rm P}_{\rm ea}) \end{cases}$$

Solar v sensitive to Pes CC/NC (SNO) & ES (SK)

But unfortunately only small differences among 3ν and 4ν

We expect a degeneracy among θ_{13} and θ_{14}

A.P. PRD 83 113013 (2011) [arXiv: 1105.1705 hep-ph]

(θ_{13}, θ_{14}) constraints

Complete degeneracy $\theta_{13}-\theta_{14}$ indistinguishable

Solar sector essentially sensitive to ~ $U_{e3}^2 + U_{e4}^2$

Hint for v_e mixing with states others than (v_1, v_2)

Different probes are necessary to determine if v_e mixes with v_3 or v_4

A.P. PRD 83 113013 (2011) [arXiv: 1105.1705 hep-ph]

Evidence of θ_{13} > 0 kills preference of θ_{14} > 0

- Upper limit \longrightarrow $\sin^2 \theta_{14} < 0.04$ (90% C.L.)
- KamLAND, only spectral shape included: limit is independent of reactor flux estimates
- θ_{13} estimate independent of θ_{14}

Solar bound is the most stringent one for $\Delta m_{14}^2 > 1 eV^2$

Talk by C. Giunti @ vTURN 2012

This is the right (and fleeting) moment (kairos) for Borexino to exploit its unique potential!

Solar vs as a probe of non-standard MSW dynamics

Coherent forward scattering in the presence of NSI : <u>pictorial view</u>

NSI described by an effective four-fermions operator

$$\mathcal{O}_{\alpha\beta}^{\mathrm{NSI}} \sim \overline{\nu}_{\alpha} \nu_{\beta} \overline{f} f$$

 $(\alpha, \beta) = e, \mu, \tau$ $f \equiv (e, u, d)$

Coherent forward scattering in the presence of NSI : <u>math. view</u>

Evolution in the flavor basis:

$$i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = H \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

H contains three terms:

$$H = H_{\rm kin} + H_{\rm dyn}^{\rm std} + H_{\rm dyn}^{\rm NSI}$$

Kinematics

$$H_{kin} = U \begin{pmatrix} -\delta k/2 & 0 & 0 \\ 0 & +\delta k/2 & 0 \\ 0 & 0 & k/2 \end{pmatrix} U^{\dagger}$$
 $\delta k = \delta m^2/2E$

 Standard
 $H_{dyn}^{std} = diag(V, 0, 0)$
 $V(x) = \sqrt{2}G_F N_e(x)$

dynamics

$$I_{\rm dyn}^{\rm std} = {\rm diag}(V, 0, 0) \qquad V(x) = \sqrt{2}G_F N_e(x)$$

Non-standard dynamics

$$(H_{\rm dyn}^{\rm NSI})_{\alpha\beta} = \sqrt{2} \, G_F \, N_f(x) \epsilon_{\alpha\beta}$$

Reduction to an effective two flavor dynamics

 $\Delta m^2 \rightarrow \infty$

One mass scale approximation: $P_{ee} = c_{13}^4 P_{ee}^{\text{eff}} + s_{13}^4$ survival probability $i \frac{d}{dx} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix} = H^{\text{eff}} \begin{pmatrix} \nu_e \\ \nu_a \end{pmatrix}$ effective evolution $H^{\text{eff}} = V(x) \begin{pmatrix} c_{13}^2 & 0 \\ 0 & 0 \end{pmatrix} + \underbrace{\sqrt{2}G_f N_d(x) \begin{pmatrix} 0 & \varepsilon \\ \varepsilon & \varepsilon' \end{pmatrix}}_{\text{to 4v effects}} \text{Formally similar}$ For $\theta_{13} = 0$: $\epsilon_{\mu\tau} \sim 0$ (strong bounds from $\varepsilon = -\varepsilon_{e\mu}c_{23} - \varepsilon_{e\tau}s_{23}$ atmospheric v) $\varepsilon' = -2\varepsilon_{\mu\tau}s_{23}c_{23}$

Parameter space:

$$[\delta m^2, \theta_{12}, \varepsilon]$$

Impact of NSI on the solar spectrum

A.P, PRD 83, 101701 (2011) (Rapid Communications)

NSI with a size of ~10% are needed to produce appreciable effects: 4v effects induced by sterile neutrinos (~1%) are thus unobservable

NSIs can help to explain the anomalous spectrum behavior

BOREXINO

This hypothesis can be tested quantitatively

The response functions of SK, SNO, Borexino are centered around $E_0 = 10$ MeV, where they have maximal sensitivity

Assuming a regular behavior for the survival probability we can parameterize its high energy behavior as a second order polynomial

$$P_{ee} = c_0 + c_1 (E-E_0) + c_2 (E-E_0)^2$$

It is then possible to:

- 1) Extract the coefficients from the combination of all the experiments sensitive to the high-energy neutrinos.
- Check where a given theor. model (standard MSW,+NSI, etc.) "lives" in the space of the coefficients c_i's.

Constraints on [c1,c2]

NSI gains a $\Delta\chi^2$ ~ -2.0 from better description of the spectrum

NSI can also alleviate tension in δm^2 determinations

A.P. and J.W.F. Valle, PRD 80, 091301 (2009)

Monday, June 4, 12

M. Smy @ Neutrino 2012

Summary

- Solar vs gave the first indication of non-zero θ_{13} and constitute a precision-machine usable to test new physics.
- An important example is provided by sterile vs, now at the center of intense investigation. Taking into account that θ_{13} >0, the solar sector enables us to establish:

$$U_{e4}^2 < 0.04 \quad (90\% \text{ C.L.})$$

- A second example is given by NSI. The current analyses show NSI may help in explaining two emergent anomalies.
- New experiments are indispensable to settle both issues.

Thank you for your attention!

How the indication of $\theta_{23} < \pi/4$ emerges

LBL introduce:

- θ_{23} - θ_{13} anticorrelation
- prefer. non-maximal θ_{23}
- weak octant asymmetry

Once reactors fix θ_{13} the octant asymmetry is enhanced

Atm. further enhance octant asymmetry

Global indication of $\theta_{23} < \pi/4$ emerges

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012) (includes Neutrino 2012 results)

First information about $\boldsymbol{\delta}$

LBL are almost insensitive to δ

Weak sensitivity emerges once reactors fix θ_{13}

Atm. enhance sensitivity

Global hint of $\delta \sim \pi$ emerges

Fogli, lisi, Marrone, Montanino, A.P., Rotunno, PRD 86 013012 (2012) (includes Neutrino 2012 results)

If $\delta \sim \pi$ confirmed it would indicate U ~ real and a small J ... and a long and difficult way towards CPV observation!