

Neutrino Telescopes 2013 @Venice on March 14, 2013

Hyper-Kamiokande

T. Nakaya (Kyoto) for the Hyper-K working group

Hyper-K Overview

Total Volume 0.99 Megaton Inner Volume 0.74 Mton Fiducial Volume Outer Volume 0.2 Megaton Photo-sensors

Wideb 48m

Compart 19.5m

2

0.56 Mton (0.056 Mton × 10 compartments) 99,000 20"Φ PMTs for Inner Det. (20% photo-coverage) 25,000 8"Φ PMTs for Outer Det.

nper-K

Treal Length 247.5m (SCimpartments) --

Cavity

(Lining)

arXiv:1109.3262 [hep-ex]

Water Purification

System

Electrical Machinery Room

Access Tunnel

x50 for vCP to T2K

x25 Larger v Target & Proton Decay Source

higher intensity v by upgraded J-PARC

or power

123.1

831 citation

The JHF-Kamioka neutrino project

Y. Itow¹, T. Kajita¹, K. Kaneyuki¹, M. Shiozawa¹, Y. Totsuka¹,
Y. Hayato², T. Ishida², T. Ishii², T. Kobayashi², T. Maruyama²,
K. Nakamura², Y. Obayashi², Y. Oyama², M. Sakuda², M. Yoshida²,
S. Aoki³, T. Hara³, A. Suzuki³,
A. Ichikawa⁴, T. Nakaya⁴, K. Nishikawa⁴,
T. Hasegawa⁵, K. Ishihara⁵, A. Suzuki⁵,
A. Konaka⁶

¹ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan

 2 Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK),

Tsukuba, Ibaraki 305-0801, Japan

³ Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

⁵ Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

 6 TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada, V6T 2A3

Abstract

The JHF-Kamioka neutrino project is a second generation long base line neutrino oscillation experiment that probes physics beyond the Standard Model by high precision measurements of the neutrino masses and mixing. A high intensity narrow band neutrino beam is produced by secondary pions created by a high intensity proton synchrotron at JHF (JAERI). The neutrino energy is tuned to the oscillation maximum at ~1 GeV for a baseline length of 295 km towards the world largest water Čerenkov detector, Super-Kamiokande. Its excellent energy resolutio: and particle identification enable the reconstruction of the initial neutrino energy, which is compared with the narrow band neutrino energy, through the quasi-elastic interaction. The physics goal of the first phase is an order of magnitude better precision in the $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation measurement ($\delta(\Delta m_{23}^2) = 10^{-4} \text{ eV}^2$ and $\delta(\sin^2 2\theta_{23}) = 0.01$), a factor of 20 more sensitiv, search in the $\nu_{\mu} \rightarrow \nu_e$ appearance ($\sin^2 2\theta_{\mu e} \simeq 0.5 \sin^2 2\theta_{13} > 0.003$), and a confirmation of the

 $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation or discovery of sterile neutrinos by detecting the neutral current events. If the second phase, an upgrade of the accelerator from 0.75 MW to 4 MW in beam power and the construction of 1 Mt Hyper-Kamiokande detector at Kamioka site are envisaged. Another order of magnitude improvement in the $\nu_{\mu} \rightarrow \nu_{e}$ oscillation sensitivity, a sensitive search of the CP violation in the lepton sector (CP phase δ down to $10^{\circ} - 20^{\circ}$), and an order of magnitude improvement in the proton decay sensitivity is also expected.

(Fig. 20 at page 25)

a sensitive search of the CP violation in the lepton sector (CP phase δ down to 10°-20°), and an order of magnitude improvement in the proton decay Neutrino Telescopes 2005 at Venice

1

The Neutrino Physics at Accelerators: the High Intensity Frontier

T. Nakaya (Kyoto Univ.)

1. Introduction

2. T2K Experiment -II

5. Summary

- Accelerator neutrino experiments including K2K and MINOS provide essential information for neutrino mixing and mass.
- The next generation experiments with a high intensity accelerator are sensitive to

 δsin²2θ₂₃~1%; δΔm²<1×10⁻⁴eV²
 sin²2θ₁₃ < 0.01
- With a gigantic (100k~1Mtons) detector, the experiment has the sensitivity to the CP violation.

 δ<20° for sin²2θ₁₃ >0.01
- The experiments sensitive to the sign of ∆m² is also under consideration (not T2K).

We are also looking forward an expected phenomena in the experiments.

Neutrino Telescopes 2005 at Venice

1

The Neutrino Physics at Accelerators: the High Intensity Frontier

T. Nakaya (Kyoto Univ.)

1. Introduction

2. T2K Experiment -II

5. Summary

- Accelerator neutrino experiments including K2K and MINOS provide essential information for neutrino mixing and mass.
- The next generation experiments with a high intensity accelerator are sensitive to

 δsin²2θ₂₃~1%; δΔm²<1×10⁻⁴eV²
 sin²2θ₁₃ < 0.01
- With a gigantic (100k~1Mtons) detector, the experiment has the sensitivity to the CP violation.

 δ<20° for sin²2θ₁₃ >0.01
- The experiments sensitive to the sign of ∆m² is also under consideration (not T2K).

We are also looking forward an expected phenomena in the experiments.

Neutrino Telescopes 2005 at Venice

1

The Neutrino Physics at Accelerators: the High Intensity Frontier

T. Nakaya (Kyoto Univ.)

1. Introduction

2. T2K Experiment -II

5. Summary

- Accelerator neutrino experiments including K2K and MINOS provide essential information for neutrino mixing and mass.
- The next generation experiments with a high intensity accelerator are sensitive to

 □ δsin²2θ₂₃~1%; δΔm²<1×10⁻⁴eV²
 □ sin²2θ₄₂ < 0.01
- With a gigantic (100k~1Mtons) detector, the experiment has the sensitivity to the CP violation.
 Δ<20° for sin²2θ₁₃ >0.01
- The experiments sensitive to the sign of ∆m² is also under consideration (not T2K).

We are also looking forward an expected phenomena in the experiments.

Hyper-K in Japanese Future Strategy

Recommendation by HEP community

- http://www.jahep.org/office/doc/201202_hecsubc_report.pdf
- Recommendations for two large-scale projects
 - Linear Collider
 - Large-scale Neutrino & Nucleon decay Detector
- KEK roadmap draft (Jan. 2013) includes Hyper-K
 - http://kds.kek.jp/getFile.py/access?sessionId=1&resId=0&materialId=0&confId=11728
- Cosmic Ray community endorses Hyper-K as a next large-scale project
- The master plan for large scale projects in Science Council of Japan
 - A proposal of large neutrino/nucleon-decay detector will be submitted with Hyper-K. J-PARC neutrino beam operation w ~>1MW and a near detector complex are also packaged.
 - (Ref.) the master plan in 2010, Hyper-K was described in page 20
 - http://www.scj.go.jp/ja/info/kohyo/pdf/kohyo-21-t90-e2.pdf

Japan HEP community

Recommendations

The committee makes the following recommendations concerning large-scale projects, which comprise the core of future high energy physics research in Japan.

- Should a new particle such as a Higgs boson with a mass below approximately 1 TeV be confirmed at LHC, Japan should take the leadership role in an early realization of an e⁺e⁻ linear collider. In particular, if the particle is light, experiments at low collision energy should be started at the earliest possible time. In parallel, continuous studies on new physics should be pursued for both LHC and the upgraded LHC version. Should the energy scale of new particles/physics be higher, accelerator R&D should be strengthened in order to realize the necessary collision energy.
- Should the neutrino mixing angle θ₁₃ be confirmed as large, Japan should aim to realize a large-scale neutrino detector through international cooperation, accompanied by the necessary reinforcement of accelerator intensity, so allowing studies on CP symmetry through neutrino oscillations. This new large-scale neutrino detector should have sufficient sensitivity to allow the search for proton decays, which would be direct evidence of Grand Unified Theories.

13年3月15日金曜日

Physics

Nature is kind to neutrinos

Established

- Neutrino oscillations everywhere
- Large mixing angles
- not too small mass difference!

• Will be established in the near future

- majonara mass
- Inverted mass hierarchy
- sterile neutrinos (w/ various mass scales)
- large CP violation (w/ PMNS δ_{CP} and maybe from the sterile sectors...)
- neutrino mass effects in cosmology

Physics Topics in Hyper-K arXiv:1109.3262 [hep-ex]

- Accelerator Neutrino Beam
- Atmospheric Neutrinos
- Solar Neutrinos
- Astrophysical Neutrinos
 - Supernova, Dark Matter, Solar flare, etc..
- Neutrino geophysics
- Nucleon Decay

GUT

Neutrino Oscillations

w/ CPV

 NOTE: Although some neutrino sources are free, the capability of the detector to catch free neutrinos are NOT free.

Letter of Intent:

The Hyper-Kamiokande Experiment

– Detector Design and Physics Potential –

K. Abe,^{12,14} T. Abe,¹⁰ H. Aihara,^{10,14} Y. Fukuda,⁵ Y. Hayato,^{12,14} K. Huang,⁴

A. K. Ichikawa,⁴ M. Ikeda,⁴ K. Inoue,^{8,14} H. Ishino,⁷ Y. Itow,⁶ T. Kajita,^{13,14} J. Kameda,^{12,14}

Y. Kishimoto,^{12,14} M. Koga,^{8,14} Y. Koshio,^{12,14} K. P. Lee,¹³ A. Minamino,⁴ M. Miura,^{12,14}

S. Moriyama,^{12,14} M. Nakahata,^{12,14} K. Nakamura,^{2,14} T. Nakaya,^{4,14} S. Nakayama,^{12,14}

K. Nishijima,⁹ Y. Nishimura,¹² Y. Obayashi,^{12, 14} K. Okumura,¹³ M. Sakuda,⁷ H. Sekiya,^{12, 14}

M. Shiozawa,^{12, 14, *} A. T. Suzuki,³ Y. Suzuki,^{12, 14} A. Takeda,^{12, 14} Y. Takeuchi,^{3, 14}

H. K. M. Tanaka,¹¹ S. Tasaka,¹ T. Tomura,¹² M. R. Vagins,¹⁴ J. Wang,¹⁰ and M. Yokoyama^{10,14}

(Hyper-Kamiokande working group)

¹Gifu University, Department of Physics, Gifu, Gifu 501-1193, Japan

²High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan

³Kobe University, Department of Physics, Kobe, Hyogo 657-8501, Japan

⁴Kyoto University, Department of Physics, Kyoto, Kyoto 606-8502, Japan

⁵Miyagi University of Education, Department of Physics, Sendai, Miyagi 980-0845, Japan

• Comparison between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ Thursday, August 25, 20 as large as ~25% from nominal. • also sensitive to exotic (non-MNS) CPV

Rich Physics in 3 generation mixings

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \text{ Leading} \qquad \text{CP violating (flips sign for } \nabla) \\ +8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ -8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}^{2}\sin\delta \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ +4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ -8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ +8C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31} \\ \text{Leading} \qquad \text{Sin}^{2}\theta_{23}\sin^{2}2\theta_{13}\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E}\right) \\ \frac{\sin^{2}\theta_{12}\sin2\theta_{23}}{2\sin\theta_{13}}\sin^{2}2\theta_{13}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \sin\frac{\Delta m_{21}^{2}L}{4E} \sin\delta \\ 0.04 \\ 0.02 \\ \sim \frac{\pi}{4}\Delta m_{21}^{2}\sin2\theta_{12}\sin2\theta_{22}}\sin^{2}\frac{E_{1}}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E}\sin\delta \\ -0.03 \\ \sim \frac{0.27 \times [leading]}{E}\sin\theta_{13}} \times \frac{E_{1}}{E} \cos\delta \\ \frac{11.8}{E}(eding]\sin\delta \\ \sim 0.27\%$$

The v beam Expected neutrino flux at Hyper-K (unoscillated)

2.5° off-axis beam from J-APRC Peaked at oscillation maximum Suppress BG from high energy component (V_T negligible)

CP measurement with J-PARC ν and Hyper-K

- Strength of water Cherenkov detector
 - LARGE mass statistics is always critical
 - Excellent reconstruction/PID performance especially in sub-GeV region (quasi-elastic→single ring)
- Best matched with low energy, narrow band beam
 - Off-axis beam with relatively short baseline
 - Less matter effect
 - Complementary to other > ~1000km baseline experiments planned w/ Lq.Ar

(natural extension of technique proved by T2K)

Full MC study

- <u>Full simulation</u> of v beam, interaction, detector response and reconstruction
 - Number of PMT: half of SK-4 (20% coverage)
- Event selection almost the same as T2K
 - Loose cut on E_v to utilize spectrum information
- Assumed 7.5MW · year beam exposure
 - We expect beam power upgrades beyond 750kW.

17

Signal efficiency	64%
ν _μ CC BG rejection	>99.9%
NC π ⁰ BG rejection	95%

• v: v = 3:7

v_e candidate events after selection

 $sin^2 2\theta_{13}=0.1, \delta=0, normal MH$

2000-4000 signal events expected for each of v and \overline{v}

LARGE $\theta_{13} => good for Hyper-K$

- High Signal ($\nu_{\mu} \rightarrow \nu_{e}$) and Low Background (π^{0} , beam ν_{e} , etc..)
 - Systematic error is more reliable (under control) for the ν_e signal than BG (example, $\pi^0)$
 - Assuming 5% sys. error for both v_e signal and background (beam v_e and NC π^0 dominant).

δ	0	π/6	π/3	π/2	π	Ι.5π
N(signal V _e)	3458	3059	2719	2597	3372	4233
N/N(δ =0)± Stat	1.0±0.020	0.885±0.021	0.786±0.023	0.751±0.024	0.975±0.020	1.224±0.017
Sys (Sig)	0.038	0.037	0.035	0.035	0.037	0.039
Sys (BG)	0.012	0.013	0.015	0.015	0.013	0.011
$N(signal \overline{V}_e)$	1900	2145	2335	2382	1830	1346
$N/N(\delta=0)\pm$ Stat	1.0±0.030	1.13±0.028	1.23±0.026	1.25±0.026	0.96±0.031	0.71±0.040
Sys (Sig)	0.033	0.034	0.035	0.035	0.033	0.030
Sys (BG)	0.017	0.016	0.015	0.015	0.017	0.020

(*) Stat and Sys are the errors considering both signal and BG events.

>10% larger variation relative to the expected number of events with δ =0 is expected for δ between $\pi/6$ and $5\pi/6$ ($7\pi/6$ and $11\pi/6$) which corresponds to ~70% region of δ .

- Good sensitivity for CPV
- modest dependence on θ_{13} value

13年3月15日金曜日

δ resolution

Effect of systematic errors

CPV Discovery Sensitivity (w/ Mass Hierarchy known)

High Sensitivity to CPV w/ <~5% sys. error

13年3月15日金曜日

K. Sakashita@ICHEP2012

T2K Experience

arbitrary unit

The predicted number of events and systematic uncertainties

The predicted # of	f events w/ 3	.01 x 10 ²⁰ p.o.t
Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$
Total	$3.22 {\pm} 0.43$	10.71 ± 1.10
ν_e signal	0.18	7.79
ν_e background	1.67	1.56
$ u_{\mu} { m background}$ (mainly	NCπº) 1.21	1.21
$\overline{\nu}_{\mu} + \overline{\nu}_{e}$ background	0.16	0.16

Systematic uncertainties

		.+
Error source	$\sin^2 2\theta_{13} = 0$	$\sin^2 2\theta_{13} = 0.1$
Beam flux+ ν int.	87%	57%
in T2K fit	0.1 /0	
ν int. (from other exp.)	5.9~%	$7.5 \ \%$
Final state interaction	3.1~%	24%
Far detector	7.1~%	
Total	13.4~%	10.3%
(T2K 2011 results:	~23%	~18%)

big improvement from the T2K 2011 results

Uncertainties are reduced using ND280 measurement

24

T2K flux extrapolation and the detector uncertainties almost reach the Hyper-K requirement.

Total Sys. error for sin²2θ₁₃=0.1: ~10%

- Beam flux + v int. constraint in T2K: 5.7%
- External V cross section uncertainty from other experiment: 7.5%
- Super-K detector uncertainty: 3.1%

Upcoming Cross section measurements in T2K-ND280 and the cross section model improvements are critical.

13年3月15日金曜日

Atmospheric Neutrino Oscillations at Hyper-Kamiokande

Covered by C.Walter

Roger Wendell, ICRR 2012.08.22 Hyper-K Open Meeting, Kashiwa

3-flavor oscillations in atmospheric V

13年3月15日金曜日

• Through matter effect (MSW), we study

- Mass hierarchy
 Asymmetry between neutrinos and antineutrinos.
- Octant of $\theta_{23} \implies$ Magnitude of resonance effect

Appearance (and $v_{\mu} \rightarrow v_{\mu}$ disappearance) interplay

• δ_{CP} (and θ_{13}) \Rightarrow Interference effects in ~GeV energy region

Mass Hierarchy Sensitivity

- Sensitivity depends on θ_{23} , δ and mass hierarch (a little).
- 3σ mass hierarchy determination for $\sin^2\theta_{23}$ >0.42 (0.43) in the case of normal (inverted) hierarchy.

Sensitivity for θ_{23} octant and CPV

θ₂₃ octant sensitivity (band depends on δ)

Fraction of δ_{CP} excluded (3 σ)

Combination of Beam and Atmospheric Neutrinos

Resolve mass hierarchy and the regeneracy $w/ > 3\sigma!$

2012.8.22

Roger Wendell

22

Hierarchy sensitivity : Combination of Beam and Atm. Neutrinos

23

Nucleon Decays

13年3月15日金曜日

Experimental Limits

Super-K gives most stringent limits for many decay modes.
 T(p→e⁺π⁰)>1.3×10³⁴years (90%C.L. by 220kton • yrs data)

► $T(p \rightarrow vK^+) > 4.0 \times 10^{33}$ years (90%C.L. by 220kton · yrs)

No signal evidence has been found giving constraints on models (GUTs)
 Constraints on SUSY models (ex: R-parity conservation)
 Exclude minimal SU(5) and minimal SUSY SU(5) models.

34

 e^+

Br = 63.5%

 K^+

ν

 π^0

$p \rightarrow e^+ + \pi^0$ searches

Super-K data are consistent with BG MC.

Super-K cut

- 2 or 3 Cherenkov rings
- All rings are showering
- $85 < M_{\pi 0} < 185 MeV/c^2$ (3-ring)
- No decay electron
- 800 < M_{proton} < 1050 MeV/c²
- P_{total} < 250 MeV/c

PRD77:032003,2008

13年3月15日金曜日

- ► BG measurement by accelerator V (K2K)
 - BG=1.63+0.42/-0.33(stat.)+0.45/-0.51(syst.) (Mt×yrs)⁻¹ (Ev<3GeV)
 - Consistent w/ simulation 1.8±0.3(stat.)

BG in Hyper-K is under control.

Search for nucleon decays

- 10 times better sensitivity than Super-K.

- only realistic plan to go beyond 10³⁵ years for $p \rightarrow e^+ + \pi^0$
- >3 σ discovery is possible for lifetime beyond Super-K limits.

13年3月15日金曜日

Status of R&D

Two Hyper-K meetings (Aug. 23-24, 2012: Jan. 14-15, 2013)

- <u>http://indico.ipmu.jp/indico/conferenceDisplay.py?</u>
 <u>ovw=True&confld=7</u>
- Review the current status of the project and discuss the strategy to realize Hyper-K.
- The next meeting will be on June 21 and 22, 2013.

Development works

- Detector design optimization
 - tank shape, segmentation wall, tank liner, PMT support structure
- Water purification system, water quality control
- DAQ electronics (under water?)
- Calibration source deployment system
 - automated, 3D control
- Software development
 - Detector geometry optimization, enhance physics capabilities
- Physics potential studies
 - requirements for near detectors
- works in the international working group

Construction start **Schedule**

assuming budget being approved from JPY2016

Let's realize the Detector

 The next open Hyper-K meeting will be on June 21-22, 2013 in Japan.
 All you are WELCOME!

Fraction of δ (%) for CPV discovery

Fraction of δ in % for which expected CPV (sin $\delta \neq 0$) significance is >3 σ

 Although the sensitivity is degraded if mass-hierarchy is unknown, the mass-hierarchy could be determined by other LBL experiments and Hyper-K atmospheric neutrino measurements at the time of CP discovery.
 43

Long baseline projects

Project	Beam power MW	Fiducial Mass kt	Baseline km	MH	CPV 90%CL, (3σ)	Physics starts	Astrophy sical program
LBNO	0.8	20- >100	2300	Excellent	71 (44)	2023	Yes
T2HK	0.75	500	295	Little	86 (74)*	2023	Yes
LBNE	0.7	10	1300	OK	69 (43)	2022	No
Lund	5	440	365	Some	86 (70)	>2019	Yes
CERN- Canfranc	0.8-4	440	650	Some	80- 88(80)	>2020	Yes

CZP

SPL.

50 100 150

P. Coloma et al.hep-ph:1203.5651

0 () 9 ()

-150 - 100 - 50

0

8(*)

- LBNE

- - T2HK

50 100 150

*: if mass hierachy is known

21

T2HK: 4MW, 500 kt LBNE: 0.8 MW,33 kt C2P=LBNO : 0.8 MW, 100 kt

by Marco Zito@Open Symposium - European Strategy Preparatory Group

co Zito

A6(')

-150-100-50 0

8(*)

$V_{\mu} \rightarrow V_{e}$ probability

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &= 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31} \text{ Leading} \quad \text{CP violating (flips sign for } \overline{\nu}) \\ &+ 8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &- 8C_{13}^{2}C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta \sin\Delta_{32} \cdot \sin\Delta_{31} \cdot \sin\Delta_{21} \\ &+ 4S_{12}^{2}C_{13}^{2}(C_{12}^{2}C_{23}^{2} + S_{12}^{2}S_{23}^{2}S_{13}^{2} - 2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta) \cdot \sin^{2}\Delta_{21} \\ &- 8C_{13}^{2}S_{12}^{2}S_{23}^{2} \cdot \frac{aL}{4E_{\nu}}(1 - 2S_{13}^{2}) \cdot \cos\Delta_{32} \cdot \sin\Delta_{31} \\ &+ 8C_{13}^{2}S_{13}^{2}S_{23}^{2} \frac{a}{\Delta m_{13}^{2}}(1 - 2S_{13}^{2}) \sin^{2}\Delta_{31} \end{split} \\ \end{split}$$

Rich physics (with precise θ_{13} expected from reactor)

45

Leading term $\propto \sin^2 2\theta_{13}$ CPV term $\propto \sin 2\theta_{13}$ Matter effect $\propto \sin^2 2\theta_{13}$

For larger sin²2θ₁₃ signal ↑, CP asymmetry ↓ matter/CP ↑

Hyper-K candidate site

& 8km south from Super-K
\$ same T2K beam off-axis angle (2.5 degree)
\$ same baseline length (295km)
\$ 2.6km horizontal drive from entrance
\$ under the peak of Nijuugo-yama
\$ 648m of rock or 1,750 m.w.e. overburden
\$ 13,000 m³/day or 1megaton/80days natural water

46

Overview of the geological survey

Cavern analysis

step-by-step calculations for each excavation benches

- cavity analysis (and PS anchor design) going on
- scheduling & costing ongoing

oto-sensor

sor etector (HPD) ackup)

Proof test of 8° HPD in a water tank from this winter
20" HPD prototype is expected in ~a half year

Preparation @ Kamioka

Multi-GeV reconstruction

Multi-GeV PID for atm v sample

Cut

Give supplemental information to the CP study conducted by the J-PARC beam

13年3月15日金曜日