New Results from RENO

Seon-Hee Seo On behalf of the RENO Collaboration KNRC, Seoul National University (March, 12, 2013)

NuTel 2013

NRC

Korea Neutrino Research Center

 $\sin^2 2\theta_{13} = 0.113 \pm 0.013(stat.) \pm 0.019(syst.)$

For the New result

Statistics:

-- about twice more data

Systematics:

-- Improved background estimation/reduction (Li/He background, fast N, flasher removal)

-- Improved energy scale calibration

Outline

- Introduction
- Experimental setup & detector
- Data-taking & data set
- Improvements in data analysis
- Results
- Summary

RENO Collaboration

12 institutions and 40 physicists

- Chonbuk National University
- Chonnam National University
- Chung-Ang University
- Dongshin University
- Gyeongsang National University
- Kyungpook National University
- Pusan National University
- Sejong University
- Seokyeong University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

Total cost : \$10M

- Start of project : 2006
- The first experiment running with both near & far detectors from Aug. 2011

1울대 김수봉 교수가 이끄는 RENO 실험팀. 30여년간 관측에 실패한 미지막 중성미자 변환상수를 밝히기 위해 프랑스 중국과 치열한 경주를 벌이고 있다.

RENO Experimental Setup

RENO Detector

- 354 ID +67 OD 10" PMTs
- Target : 16.5 ton Gd-LS, R=1.4m, H=3.2m
- Gamma Catcher: 30 ton LS, R=2.0m, H=4.4m
- Buffer: 65 ton mineral oil, R=2.7m, H=5.8m
- Veto : 350 ton water, R=4.2m, H=8.8m

PMT Mounting and Detector Closing

Near : Jan. 21, 2011

Far : Jan. 24, 2011

Detection of Reactor Antineutrinos

Stability of Gd Loaded Liquid Scintillator

* Stable light yield : ~250 pe/MeV

* Stable transparency at 430 nm

NIM A, 707, 45-53 (2013. 4. 11)

Data-Taking & Data Set

- Data taking began on Aug. 1, 2011 with both near and far detectors.
- Data-taking efficiency > 90%.
- Trigger rate w/ the threshold energy of 0.5~0.6 MeV: 80 Hz (Far Detector)
- Data-taking period > 510 days Aug. 11, 2011 ~ Present

Data-taking efficiency

Improvements in Data Analysis

Better estimation of Li/He background :

 $2.59 \pm 0.75 / day \rightarrow 3.61 \pm 0.60 / day$ (far)

 $12.45 \pm 5.93 / day \rightarrow 13.73 \pm 2.13 / day$ (near)

(more improvement soon on the errors...)

Improved flasher removal : reduction of accidental background

Reduction of fast neutron background :

 $0.97 \pm 0.06 / day \rightarrow 0.68 \pm 0.04 / day$ (far)

 $5.00 \pm 0.13 / day \rightarrow 3.14 \pm 0.09 / day$ (near)

- Major efforts on energy calibration : accurate energy scale
- Selection of clean data sample

⁹Li/⁸He Background

⁹Li/⁸He are unstable isotopes emitting (β ,n) followers and produced when muon interact with carbon in the LS.

"Flasher PMT" event

Flasher Characteristics

Anti-isolation variable R

$$R_n = \frac{\overline{n}_n}{\overline{n}_{max}}$$

 $\overline{n}_{n} \equiv \frac{\sum n_{i}}{N_{nb}} \text{Sum of NPEs in the neighbouring PMTs}$ $\overline{n}_{n} = \frac{\sum n_{i}}{N_{nb}} \text{Sum of NPEs in the neighbouring PMTs}$

 \rightarrow Smaller R value for flasher events.

Flasher Removal Cut

Cf Contamination (I)

- Tiny fraction of Cf calibration source dissolved into Gd-LS after Oct. 13, 2012 :
 - Loose O-ring in the source container \rightarrow LS into the container
 - \rightarrow Cf out of its disc package \rightarrow Cf contamination on gloves
 - \rightarrow Cf contamination on the container surface & dissolved into LS
 - Cf at the bottom of target (confirmed by event vertex)

Cf Contamination (II)

Observed Daily IBD Rate

- Solid line is predicted rate from the neutrino flux calculation.
- Observed points have very good agreement with prediction.
- It's the accurate flux measurement.

Detector Stability of Energy Scale

IBD candidate's delayed signals (capture on Gd)

New Result

(prompt energy < 10 MeV)

	Near (PRL)	Near (New)	Far (PRL)	Far (New)
# of IBD events	153,807	279,787	17,062	30,211
Total Background rate (/day)	21.73 +- <mark>5.93</mark>	20.48 +- 2.13	4.3 +- 0.75	4.89 +- 0.60
Accidental backgr ound (/day)	4.30 +- 0.06	3.61 +- 0.05	0.68 +- 0.03	0.60 +- 0.03
Fast neutron backg round (/day)	4.98 +- 0.16	3.14 +- 0.09	1.03 +- 0.07	0.68 +- 0.04
Li/He background (/day)	12.45 +- 5.93	13.73 +- 2.13	2.59 +- 0.75	3.61+- 0.60
DAQ Live-time (days)	192.42	369.034	222.06	402.693
Detector efficiency (%)	64.7 +- 0.14	61.99 %	74.5 +- 0.14	71.37 %

Measured Spectra of IBD Prompt Signal

Measured Spectra of IBD Prompt Signal

Backgrounds

* Backgrounds shape and rates are well understood.

*Total 6.5 % background at Far & 2.7 % background at Near.

Data vs. MC

Data & MC match very well !

Data vs. MC

Data & MC match very well !

Expected Reactor Antineutrino Fluxes

Reactor neutrino flux

$$\Phi(E_{\nu}) = \frac{P_{th}}{\sum_{i \text{ sotopes}} f_i \cdot E_i} \sum_{i}^{i \text{ sotopes}} f_i \cdot \phi_i(E_{\nu})$$

- P_{th} : Reactor thermal power provided by the YG nuclear power plant
- f_i : Fission fraction of each isotope determined by reactor core simulation of Westinghouse ANC
- $\phi_i(E_{\gamma})$: Neutrino spectrum of each fission isotope
 - [* P. Huber, Phys. Rev. C84, 024617 (2011)
 - T. Mueller et al., Phys. Rev. C83, 054615 (2011)]
- *E_i* : Energy released per fission

[* V. Kopeikin et al., Phys. Atom. Nucl. 67, 1982 (2004)]

Isotopes	James	Kopeikin
²³⁵ U	201.7±0.6	201.92±0.46
²³⁸ U	205.0 ± 0.9	205.52 ± 0.96
²³⁹ Pu	210.0 ± 0.9	209.99 ± 0.60
²⁴¹ Pu	212.4±1.0	213.60 ± 0.65

Detection Efficiency & Systematic Uncertainties

Criteria	Detection efficiency (%)
The fraction of neutron captures on Gd	86.52 ± 0.7
Flasher cut & Prompt energy cut	96.19 ± 0.11
The 6.0N	Reactor
Time co	Uncorrelated(%) Correlated(%)
The spill Thermal power	0.5 -
Commo Fission fraction	0.7 -
Fission reaction cross section	- 1.9
Muon ve Reference energy spectra	- 0.5
Multiplic Energy per fission	0.2
The tota Combined	0.9 2.0
	Detection
	Uncorrelated(%) Correlated(%)
IBD cross section	- 0.2
Target protons	0.10 0.5
Prompt energy cut	0.01 0.1
Flasher cut	0.01 0.11
Gd capture ratio	0.10 0.7
Delayed energy cut	0.10 0.46
Time coincidence cut	0.01 0.44
Spill-in	0.08 0.71
Muon veto cut	0.02 0.02
Multiplicity cut	0.04 0.06
Combined	0.20 1.31

Reactor Antineutrino Disappearance

Neutrino Reduction at Far

New PRL	Far reduction [%]	
< 7 MeV	7.19 %	٦
< 8 MeV	7.19 %	
< 9 MeV	7.24 %	┢
< 10 MeV	7.24 %	
< 12 MeV	7.24 %	

Neutrino reduction at Far remains Stable (within 0.05 %) beyond 7 MeV where there is no oscillation.

Definitive Measurement of θ_{13}

$$\sin^2 2\theta_{13} = 0.100 \pm 0.010(stat.) \pm 0.015(syst.)$$

Summary

- RENO was the first experiment to take data with both near and far detectors, from August 1, 2011 and data taking goes smoothly.
- RENO has collected about 510 days of neutrino data so far and improved systematic uncertainties and energy calibration.
- RENO observed a clear disappearance of reactor antineutrinos. $R = 0.929 \pm 0.006(stat.) \pm 0.009(syst.)$ preliminary
- RENO's new result (402 live days): conservative $sin^{2}(2 \theta_{13}) = 0.100 + /- 0.010 (stat.) + /- 0.015 (sys.)$

** There is a room to improve sys. error (to be improved soon).

Future Plan for Precision Measurement of θ_{13}

RENO-50 Workshop at Seoul

- ◆ When: June 13 14, 2013
- Where: Seoul National Univ., Korea

Please register ASAP!

http://home.kias.re.kr/MKG/h/reno50/

** Don't miss RENO-50 poster by Dr. JS Park.