Double Chooz (latest θ₁₃ measurements)

NuTel (Venezia, Italia) Marzo 2013

(for the Double Chooz collaboration)

Anatael Cabrera

(アナタエル カブレラ)

CNRS / IN2P3 Double Chooz @ APC (Paris)

global status of θ_{13} ...

Anatael Cabrera (CNRS-IN2P3 & APC)

global impact of θ 13 (Lisi @ Shenzhen'2012)

13

Adding 2012 SK atmospheric neutrino data:

4

those cool reactor-Vs...

the coolest reason for us...

 $ND \rightarrow$ reduce correlated inter-detector systematic uncertainties

 $ND \rightarrow only \theta \mid 3$ (no other physics: hypothetical sterile-vs)

Anatael Cabrera (CNRS-IN2P3 & APC)

Double Chooz...

7

Double Chooz collaboration

our experimental setup...

Chooz Reactors Power: $8.5 \text{GW}_{\text{th}}$ $\Rightarrow \sim 10^{21} \text{v/s}$ (N4s: very powerful)

Near <L> 400m ~400v/day I20mwe Target: 8.2t in 2014

Far <L> 1050m ~50v/day 300mwe Target: 8.2t April 2011

our neutrino " θ_{13} -telescope"...

10

engineer's view

MC's view

our favourite view...

our Outer-Veto...

calibration...

DC calibration system: redundancy...

latest energy reconstruction...

• Linearised-PE Calibration: Charge (DUQ) \rightarrow PMT photo-electrons

- non-linear gain [electronics] $g=f(q_i)$ [variance ~10%]
- $PE=\Sigma q_i \times g(q_i)$ [less non-linear, but (ρ ,z,t) dependent]
- applied the same for DATA and MC

• Uniformity Calibration: $PE(\rho,z) \rightarrow PE(\rho \rightarrow 0, z \rightarrow 0)$

- response varies by ~I0% across volume (DATA ≠ MC)
- responseMAPs using cosmogenic-n's 2.2MeV peak (H-n)

• Stability Calibration: $PE(t) \rightarrow PE(t \rightarrow \tau)$

- response **varies by 2%** (gain drift dominated)
- use cosmogenic-n's capture on Gd drift as calibration
- time reference @ τ (standard candle "MeV definition")

• Absolute Energy Calibration: $PE(0,\tau) \rightarrow MeV(0,\tau)$

• ²⁵²Cf deployed @ (ρ =0, z=0, t= τ): **2.2MeV H-n peak**

normalisation DATA and MC (no arbitrary knobs)

• Performance: any $Q(q, \rho, z, t)$ [variance ~10%] to MeV [variance ~1.0%]

• critical for δ (detection) and shape sensitivity to (θ_{13} , BGs, Δm^2)

Anatael Cabrera (CNRS-IN2P3 & APC)

ND lab: delivered in a few weeks!

un-oscillated spectrum... (MC + Bugey→ ND-like)

Wednesday, 13 March 13

のか業用

reactor- \mathbf{v} flux prediction... thermal power $N_{v}^{\exp}(E,t) = \frac{N_{p}}{4\pi L^{2}} \times \frac{P_{th}(t)}{\langle E_{f} \rangle} \times \langle \sigma_{f} \rangle$ (@Chooz) $\delta = \pm 0.46\%$ Mean energy per fission: k = ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu fission rates $\langle E_{k} \rangle = \sum \alpha_{k}(t) \langle E_{k} \rangle$ [²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu] α_k : fractional fission rate (@Chooz) [MURE simulation] $\left\langle \sigma_{f} \right\rangle_{k} = \int dE \, S_{k}(E) \, \sigma_{IBD}(E)$ Mean cross-section per fission: $\left\langle \sigma_{f} \right\rangle = \left\langle \sigma_{f} \right\rangle^{Bugey} + \sum_{k} \left(\alpha_{k}^{DC}(t) - \alpha_{k}^{Bugey}(t) \right) \left\langle \sigma_{f} \right\rangle_{k}$ energy per fission & Ofission [²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu] Bugey4 anchor point V spectrum @ FD fuel composition (initial burn-up) for both Chooz reactors [²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu] (fuel cycle / exposure) (@Chooz) ²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹Pu]

20

Anatael Cabrera (CNRS-IN2P3 & APC)

Bugey as ND... •no hypothetical sterile-V (@ short baselines) contribution •most precise flux calculations so far → interesting results

detector & readout simulation...

- **physics:** <u>generators</u> (G4 + customs)
 - IBD prediction @ FD: **δ(flux): 1.7%**

• DATA/MC detector remarkable agreement

- •δ(response): 1.13% (target)
- δ(detection): 1.0% (n physics modelling)

• physical detector...

- geometry (<u>data tuned</u>)
- scintillator response (<u>data tuned</u>)
- optical interfaces (data tuned)

• conversion: $MeV \rightarrow \gamma \rightarrow PE$ (@ PMT)

• detector readout...

PMT, FEE, FADC, Trigger (data tuned)

• pulse shapes, charge, digitisation, etc

• conversion: PE→Charge

• detector calibration...

calibrate MC exactly as DATA (<u>data tuned</u>)

• biases & precision (systematics)

• conversion: Charge→PE→MeV

FD oscillated spectrum...

100

Gd-IBD selection criteria...

selection details...

	Gd-IBD	H-IBD	
µ -tagging	E(ID)≥30MeV & Q(IV)≥30kDUQ		Single
$\Delta t(\mu)$	lms		Selection
LN[QmQt]	≤0.09 (prompt) ≤0.06 (delay)		
$LN[RMS(t_{PMT})]$	40ns		
Δt(n~e+)	[2,100] µ s	[10,600] µ s	IBD
Δ d(n~e+)	_	≤ 0.9m	Selection
E(delay)	[6,12]MeV	[1.5,3.0]MeV	
E(prompt)	[0.7,12.2]MeV		
Multiplicity	[-0.1,0.4]ms	[-0.6, l]ms	
OV veto	yes	no	BG
Spallation- μ veto	yes	no	Rejection
		$\overline{\nabla}$	
	8249 IBDs (with BG) 227.9days	▼ 36284 IBDs (with BG) 240. I days	

Anatael Cabrera (CNRS-IN2P3 & APC)

Neutrino Rate (day⁻¹)

Number of Days Since April 13 2011

IBD features...

Gd-IBD Signal/BG ~19

Anatael Cabrera (CNRS-IN2P3 & APC)

27

BACKGROUNDS

28

our model: 3 backgrounds (so far)...

cosmic-µ

best known...

•**\delta**BG/Signal \rightarrow <0.01%(negligible rate uncertainties) •pile @ oscillation minima region (Δ m² resolution)

accidental... (the <u>good</u> one)

cosmic-µ

worst known...

•δBG/Signal→largest (poor statistics)

•poorly known data-shape (MC→KamLAND,etc)

isotopes... (the <u>ugly</u> one)

most dangerous...

slope @ low-energy: modelling (hard)
shape measured via IV tagging → mimics θ₁₃?

correlated... (the <u>bad</u> one)

p-recoil spectrum (with reactor ON)

Correlated-BG (Gd-IBD)

Correlated-BG (H-IBD)

- •a composite spectrum: **fast-n** (p-recoil) + **stopping-μ** (Bragg spectrum)
- •(fast-n) **p-recoil spectrum @ low energies** (**very challenging**)
 - •huge (100x) ν BG during reactor ON over fitting region **[0.7,12.2]MeV**
 - •DC measures: **NOT necessarily flat** (quenching+acceptance)
- data measurement (accurate) → **IV & OV tagging** (<u>only DC</u>)
- •how about "extrapolation as flat" from HE?
 - DC: <u>rate biassed by $I.5\sigma(Gd) \sim 7.4\sigma(H)$ </u> and **incorrect shape**
 - •biassed slope \rightarrow **bias (**similar signature) θ_{13} (<u>bad</u>)

Anatael Cabrera (CNRS-IN2P3 & APC)

oscillation analyses results...

小田田

(Gd) rate+shape fit $\rightarrow \theta_{13}$ +BG estimation...

input: θ|3 model & full BG model (3 BGs and their rates and spectra)
output: θ|3 & cosmogenic BG re-evaluated (via pulls)

•BG re-evaluation $\rightarrow \sim 15\%$ less BG (wrt rate)

• θ_{13} & BG fully correlated \rightarrow BG re-estimation varies θ_{13} (consistency)

•BG(fit) in <u>better agreement wrt reactor-OFF</u> (only DC)

• same θ_{13} with 1 or 2 Integration Periods \rightarrow result robust BG robust

Anatael Cabrera (CNRS-IN2P3 & APC)

two independent measurements of θ_{13} ...

rate+shape analysis \rightarrow clear θ_{13} E/L pattern & BG constrains

DC-II(Gd): $\sin^2(2\theta_{13})=0.109\pm0.04 \ [0.030^{\text{stat}}\pm0.025^{\text{syst}}]$ **DC-II(H):** $\sin^2(2\theta_{13})=0.097\pm0.05 \ [0.034^{\text{stat}}\pm0.034^{\text{syst}}]$

Anatael Cabrera (CNRS-IN2P3 & APC)

rate systematics breakdown...

	Gd-IBD (%)	H-IBD (%)	
δ (flux)	I.75		
δ (accidental-BG)	0.01	0.22	
δ (correlated-BG)	0.54	0.64	
$\boldsymbol{\delta}$ (isotopes-BG)	I.46	I.56	
δ (light Noise-BG)	~0	0.10	
δ (response)	0.3	0.3	
δ (detection)	1.01	1.56	
δ (stat)	1.12	1.08	

observed vs expected rate...

next: plot observed vs expected IBD rate per day

Reactor Rate Modulation Analysis...

evolution of DC measurements...

DC θ_{13} Analyses Evolution

Wednesday, 13 March 13

Anatael Cabrera (CNRS-IN2P3 & APC)

measuring/validating BGs...

• **BG knowledge:** rate (easier) & shape (limited statistics) • CHOOZ BG: reactor OFF (no need for a model) \rightarrow Li (by KamLAND) • cosmogenic BG knowledge limited by statistics (~Iday^{-I}) (slowly improving) • [I] exclusive measurement: each BG [difficult with reactor ON] ● technique: sub-samples (approximations/extrapolations) → systematics? ● limitation: assumes BG-model → <u>completeness</u>? (i.e. accuracy) • [2] exclusive measurement: each BGs upon rate+shape fit • technique: relies on a priori knowledge (rate & shapes) & relative interplay • advantage: robust θ_{I3} (full model: <u>E/L & all known BG spectra</u>) • [3] inclusive (direct) measurement: reactor-OFF • technique: rate & shape of complete BG (no models) \rightarrow validate BG model • *limitation:* (so far) \perp week (poor stats) \rightarrow (virtually) no spectral info • [4] inclusive (indirect) measurement: RRM analysis (w/o reactor-OFF) • technique: compare expected vs observed IBDs \rightarrow measure θ_{13} & BG (correlation) • advantage: use reactor-OFF \rightarrow impact to inclusive BG, θ_{13}

42

background estimation summary...

	Gd-IBD		H-IBD	
	rate	rate+shape	rate	rate+shape
accidentals	0.261±0.002 (0.7%)		73.45±0.16 (0.2%)	
cosmo-isotopes	1.3±0.54	1.00±0.29	2.8±1.2	3.9±0.6
correlated	0.67±0.20	0.65±0.13	2.50±0.47	2.60±0.40
fast-n	~0.20	N/A	all	all
stopping- µ	~0.47	N/A	N/A	N/A
Light Noise	N/A	N/A	0.32±0.07	
total (Σ exclusive)	2.2±0.6	1.9±0.3	79.1±1.3	80.3±0.7
reactorOFF (inclusive)	1.0±0.4		N/A (yet)	
modulation (inclusive)	2.8±1.5	I.I±0.5	N/A (yet)	N/A (yet)

- DC short baseline (1050m) \rightarrow hard to see "rise" (poor constrain in Δm^2)
 - •coarse binning (Gd) 500keV
- •rate+shape: challenges.all.knowledge...
 - •<u>neutrino oscillation model</u>: E/L shape (using MINOS Δ m2)
 - •<u>BG model</u> (completeness + rate + shape)
- •feature @ 6MeV→new BG vs fluctuation (large systematics)?
 - •(regardless) E/L (for DC is short-ish) & rate+shape \rightarrow **robust** θ I 3

いろかをあた

Anatael Cabrera (CNRS-IN2P3 & APC)

measurements by DC...

(assumed a rate analysis à la DB & RENO)

Anatael Cabrera (CNRS-IN2P3 & APC)

rate-like uncertainties...

uncertainty on R	FD only (%)	ND+FD (%)
$\pmb{\delta}$ (response)	0.3	<0.3
δ (flux)	Ι.7	≤ 0.2 ? ∼iso-flux
$\boldsymbol{\delta}$ (detection)	I.0	0.2 ? à la DB/RENO
δ (BG)	0.9	~0.5? BG rejection (my view)
δ ^{rate} (total)	2.2	~0.6
δ(statistics)	~I.I (now)	~0.6 (3 years ND+FD)

 $\delta(\mathbf{R}) \rightarrow \delta(\sin^2(2\theta_{13}))$ increase (DC: <u>shortest baseline</u>)

Anatael Cabrera (CNRS-IN2P3 & APC)

what to remember?

conclusions...

• θ I 3 reactor measurement will dominate for long...

- precision → <u>multi-detector</u> technique (combined: ~5%)
- accuracy→ better analyses (time) & inter-experiment validation
- global impact to neutrino oscillations → constraints & predictions

• Double Chooz...

• few θ **I3** measurements \rightarrow consistent (cross-check precision & accuracy) • improving all analyses \rightarrow surprises are coming!! • BG is most critical (but *that's what we do best*: 4 fold cross-checks) • δ (systematics): 2.2% \rightarrow ~0.6% (prospected with ND) • FD-only: $\sigma[sin^2(2\theta_{13})]$: ~0.03 [dominated by $\delta(flux)$] • ND+FD: σ [sin²(2 θ ₁₃)]: ~0.01 [i.e. ~10% for sin²(2 θ ₁₃)=0.1] • Global: final precision & accuracy of θ | 3... • several experiments (different systematics) \rightarrow validate accuracy of θ 13 • DC: sensitive BG to $\delta(BG)$ [also **RENO**] • **RENO/DB:** sensitive to δ (flux)