Global Status of Sterile Neutrino Scenarios

Joachim Kopp

Max Planck Institut für Kernphysik, Heidelberg

XV International Workshop on Neutrino Telescopes Venice, Italy March 13, 2012

Outline

Outline

Theoretical Motivation

2 Sterile Neutrino Oscillations: The Global Picture

Sterile neutrinos

... so why do we talk about sterile neutrinos?

Sterile neutrinos

Definition

Sterile neutrino = SM singlet fermion

- Very generic extension of the SM
 - can be leftovers of extended gauge multiplets (e.g. GUT multiplets)
- Very useful in phenomenology:
 - Can explain smallness of neutrino mass (seesaw mechanism, m ~ TeV... M_{Pl})
 - Can explain baryon asymmetry of the Universe (leptogenesis, *m* ≫ 100 GeV)
 - Can explain dark matter (m ~ keV)
 - Can explain various neutrino oscillation anomalies (m ~ eV)

 \rightarrow This talk

eV-scale sterile neutrinos

Typical Lagrangian:

$$\mathcal{L} \supset \frac{1}{2} M_{ij}^{(a)} \overline{\nu_i^c} \nu_j + \frac{1}{2} M_{is}^{(s)} \overline{\nu_i^c} \nu_s + h.c.$$

 \Rightarrow mass mixing between active and sterile neutrinos

Signatures in oscillation experiments

• Disappearance of active neutrinos

(e.g. $\nu_e \rightarrow \nu_s$ oscillations)

Atmospheric, Solar, Reactor, Pion decay beam, Radioactive source experiments

• Anomalous transitions among active neutrinos ("appearance") (e.g. $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$)

Pion decay beams

• Oscillation length $L^{\rm osc} = 4\pi E / \Delta m_{41}^2$ different from SM expectation (typically shorter)

Notation: $\Delta m_{jk}^2 = m_j^2 - m_k^2$; $m_{4,5}$: mostly sterile, $m_{1,2,3}$: mostly active

Theoretical challenge: complicated dependence of observable oscillation probabilities on the fundamental parameters of the theory

3-flavour mixing matrix

1	Cos [012] Cos [013]	Cos[013] Sin[012]	e ^{-i 50} Sin[013]
	-Cos[Θ 23] Sin[Θ 12] - e ^{i δ0} Cos[Θ 12] Sin[Θ 13] Sin[Θ 23]	Cos[θ 12] Cos[θ 23] - e ^{i δ0} Sin[θ 12] Sin[θ 13] Sin[θ 23]	Cos[013] Sin[023]
	$-e^{i - \partial 0}$ Cos [θ 12] Cos [θ 23] Sin [θ 13] + Sin [θ 12] Sin [θ 23]	- e ^{i $\partial 0$} Cos[$\partial 23$] Sin[$\partial 12$] Sin[$\partial 13$] - Cos[$\partial 12$] Sin[$\partial 23$]	Cos[013] Cos[023]

Theoretical challenge: complicated dependence of observable oscillation probabilities on the fundamental parameters of the theory

4-flavour mixing matrix

Theoretical challenge: complicated dependence of observable oscillation probabilities on the fundamental parameters of the theory

5-flavour mixing matrix

{{ Cos | 612 } Cos | 613 } Cos | 614 } Cos | 614] Cos | 615] Cos | 613 } Cos | 614] Cos | 615] Sin | 612] , e - i 60 Cos | 614] Cos | 625] Sin | 613] , e - i 61 Cos | 625] Sin | 614] , e - i 62 Sin | 625] } { - Com (#24] Com (#24] Com (#25] Sin (#22] + Com (#24] (- e 1 40 Com (#24] Com (#25] Sin (#22] + Com (#25] Sin (#22] + Com (#25] Sin (#22] + Com (#24] Com (#24] Sin (#22] + Com (#24] Sin (#22] Sin (#2) Cos[622] Cos[624] Cos[625] + Sin[622] (-e¹ 60 Cos[625] Sin[625] Sin[625] Sin[623] + Cos[623] + Cos[623] (-e¹ 61 Cos[625] Sin[624] - e¹ 62 Cos[624] Sin[625] Sin e - 1 50 [e 1 50 cos (624) cos (624) cos (625) 211 (625) + 211 (623) [- e 1 51 cos (625) 211 (624) 211 (624) - e 1 52 cos (624) 211 (625) 211 (625)]. e - 1 62 [e 1 62 cos [634] cos [634] cos [634] - e 1 62 cos [634] sin [635] sin [635]), cos [635] sin [625]), [- sin [612] [- cos [634] cos [635] sin [622] + cos [635] sin [634] sin [634] sin [635] sin [635] sin [635])) + Cos[62] [- e ¹ ⁶⁰ Sin[62] [Cos[623] Cos[634] Cos[635] + Sin[623] [- Cos[635] Sin[624] Sin[634] - Cos[634] Sin[625] Sin[625]) + Cost(d1) [- e 1 42 Cost(d4) Cost(d2) Sin(d2) Sin(d2) - e 1 43 Sin(d24) [Cost(d24) Cost(d25) Sin(d34) - Sin(d24) Sin(d25) Sin(d25)]]. Cras [612] [- Cras [634] Cras [635] Sin [623] + Cras [635] [- Cras [636] Sin [634] - Cras [624] Sin [625] Sin [635]) + Sin [612] [- e ¹ ⁰⁰ Sin [613] [Cos [623] Cos [634] Cos [635] + Sin [623] [- Cos [635] Sin [624] Sin [634] - Cos [624] Sin [625] Sin [625]) + Cost(d1) [- e 1 42 Cost(d4) Cost(d2) Sin(d2) Sin(d2) - e 1 43 Sin(d24) [Cost(d24) Cost(d25) Sin(d34) - Sin(d24) Sin(d25) Sin(d25)]]. e - 1 50 [e 1 50 Cos[623] (Cos[623] Cos[634] Cos[635] + Sin[623] [- Cos[635] Sin[624] Sin[634] - Cos[624] Sin[625] Sin[625])) + sin [013] [- e i 62 Cos | 014] Cos | 025] Sin [015] Sin [035] - e i 61 Sin [004] [Cos | 024] Cos | 035] Sin | 034] - Sin [024] Sin [025] Sin [025]]]] , $e^{-i \cdot \delta 1} \left[-e^{-i \cdot \delta 2} \cdot \operatorname{Cos}[i \delta 2 + i \cdot \delta 2 \cdot \operatorname{Cos}[i \delta 2 + i \cdot \delta 1 \cdot \operatorname{Cos}[i \delta 2$ { - 21n [422] (- 21n [422] (- 21n [424] (- 20n [445] 21n [434] - 20n [435] 21n [445]) + 20n [435] (- 20n [424] (- 20n [445] - 21n [445] - 21n [445] (- 20n [445] - 21n [445] - 21n [445] (- 20n [445] - 21n [445] - 21n [445] - 21n [445] (- 20n [445] - 21n [Cos [012] Cos [014] (- e 1 02 Cos [014] Cos [025] Cos [035] Sin [045] - e 1 01 Sin [014] (- Cos [035] Sin [024] Sin [025] Sin [045] + Cos [024] (Cos [034] Cos [034] Cos [034] Sin [035] Sin [045] + Cos [034] Sin [035] Sin [045] + Cos [034] Sin [035] Sin [045] + Cos [034] e¹ ⁴⁰ sin [013] (Cos [023] (-Cos [045] sin [034] - Cos [044] sin [035] sin [045]) + sin [023] (-Cos [024] Cos [035] sin [045] - sin [024] (Cos [034] Cos [034] Cos [045] - sin [024] (Cos [045] - sin [045] (Cos [045] - sin [044] (Cos [045] - sin [045] (Cos [045] - sin [045] (Cos [045] (Cos [045] - sin [045] (Cos [045] (Cos [045] (Cos [045] - sin [045] (Cos [045] Com [622] [- Com [645] Sin [624] - Com [624] Sin [634] Sin [634] Sin [635] Sin [645]] + Com [623] [- Com [624] Com [635] Sin [625] Sin [645] - Sin [624] Com [634] Com [634] Com [634] Sin [635] Sin [Sin (621 Cost (621 Cost (624 Cost (624 Cost (624 Cost (625 Cost (625 Sin (625 Sin (625 Sin (625 Sin (624 Sin (625 Sin (624 Cost (624 Cos e 1 20 3m [013] (Com [023] (- Com [024] Sin [034] - Com [034] Sin [035] Sin [045]) + Sin [023] (- Com [034] Com [035] Sin [025] Sin [025] Sin [024] (Com [034] Com [034] Sin [035] Sin [045]))] , e - 1 60 [Sin (621] [-e 1 62 Cos (624] Cos (625] Cos (625] Sin (625] Sin (625] Sin (625] - e 1 62 Sin (624] [- Cos (625] Sin (624] Sin (625] Sin (625] Sin (624] (- Cos (625) Sin (625) Si e¹.00 Cos[#31] (Cos[#22] (-Cos[#34] Cos[#34] - Cos[#34] Sin[#35] Sin[#45]) + Sin[#23] (-Cos[#34] Cos[#35] Sin[#25] Sin[#45] - Sin[#34] (Cos[#34] Cos[#34] Cos[#34] Cos[#34] Cos[#35] Sin[#35] Sin[#35] Sin[#45]))) e - 1 42 [-e1 42 Com (425] Com (425] Sin (44) Sin (45] Sin (44) Sin (45] + e 1 42 Com (44] [-Com (435] Sin (445] + Com (44) [Com (445] - Sin (445] Sin (445] Sin (445])]), Com (435] Com (435] Com (435] Sin (445]], {- Sin (621) [- Sin (623)] - Cos (644) Cos (645) Sin (635) + Sin (634) Sin (645) + Cos (645) Cos (645) Cos (645) Sin (625) - Sin (624) [- Cos (645) Sin (635) - Cos (645) Sin (645)]) + Cos[62] Cos[62] (- e 1 62 Cos[624] (- e 1 62 Cos[625] Cos[635] Cos[635] Cos[635] - e 1 61 Sin[625] - e 1 61 Sin[635] Cos[645] Sin[625] + Cos[6324] (- Cos[6324] (- Cos[6324] Sin[6325] - Cos[6324] Sin[635] - Cos[6324] Sin[645]))) e 1 40 Sin (#13) (Cos (#24) (- Cos (#34) Cos (#45) Sin (#35) + Sin (#45)) + Sin (#45)) + Sin (#24) (- Cos (#45) Sin (#25) - Sin (#24) (- Cos (#45) Sin (#34) Sin (#45)))) , cos[02] (- 325 [02] (- cos[04] cos[04] cos[045] 325 [035] + 325 [045] + cos[045] (- cos[02] (- cos[02] cos[045] Sin (#22) Cos (#34) Cos (#24) Cos (#35) Cos (# e - i 60 (Sin (62) (- e i 62 Cos (644) Cos (625) Cos (645) Sin (625) - e i 63 Sin (644) (- Cos (645) Sin (624) (- Cos (645) Sin (624) (- Cos (645) Sin (644) Sin (644) Sin (644) Sin (645)))) + e 1 00 cos (#33) (cos (#23) (- cos (#45) 3in (#35) + 3in (#45)) + 3in (#45)) + 3in (#45)) + 2in (#24) cos (#35) 3in (#25) - 3in (#24) (- cos (#45) 3in (#34) 3in (#35) - cos (#44) 3in (#45))))), e⁻¹ d2 (-e¹ d2 (cos[405] Cos[405] Cos[405] Cos[405] Sin[414] Sin[425] + e¹ d1 Cos[405] Cos[405] Sin[404] Sin[425] + Cos[405] Sin[404] (-Cos[405] Sin[404] Sin[404] Sin[405] - Cos[405] Sin[404] Sin[405])), Cos[415] Cos[405] Cos[405] Cos[405] Cos[405] Sin[404] Sin[404] Sin[404]))

Theoretical challenge: complicated dependence of observable oscillation probabilities on the fundamental parameters of the theory

Analysis strategy

- Understand oscillation probabilities analytically
- Determine relevant parameters / parameter combinations for each experiment
- Use theoretical knowledge to simplify computations
- Perform global fit

Giunti Laveder Archidiacono Fornengo Hannestad Melchiori Li Liu Long Conrad Ignarra Karagiorgi Shaevitz Spitz Djurcic Sorel JK Machado Maltoni Schwetz (this talk)

Oscillation anomalies: LSND and MiniBooNE

- LSND:
 - *ν
 _e* appearance in *ν
 _μ* beam from stopped pion source (> 3σ)
- MiniBooNE:
 - ► No significant v_e or v_e excess in the LSND-preferred region
 - but ve consistent with LSND
 - Low-E excess not understood

MiniBooNE arXiv:1207.4809

Reactor and gallium experiments

• Recent reevaluation of expected reactor $\bar{\nu}_e$ flux is $\sim 3.5\%$ higher than previous prediction

Mueller et al. arXiv:1101.2663, P. Huber arXiv:1106.0687

- Method: Use measured β -spectra from ²³⁸U, ²³⁵U, ²⁴¹Pu fission at ILL and convert to $\bar{\nu}_e$ spectrum (for single β -decay: $E_{\nu} = Q E_e$)
- Requires knowledge of *Q*-values for all contributing decays.
 - \rightarrow take from nuclear databases where available, fit to data otherwise

see talks by Michel Cribier and Patrick Huber

Reactor and gallium experiments

- Recent reevaluation of expected reactor $\bar{\nu}_e$ flux is $\sim 3.5\%$ higher than previous prediction Mueller et al. arXiv:1101.2663, P. Huber arXiv:1106.0687
- Method: Use measured β -spectra from ²³⁸U, ²³⁵U, ²⁴¹Pu fission at ILL and convert to $\bar{\nu}_e$ spectrum (for single β -decay: $E_{\nu} = Q E_e$)
- Requires knowledge of *Q*-values for all contributing decays.
 → take from nuclear databases where available, fit to data otherwise

see talks by Michel Cribier and Patrick Huber

- Experiments with intense radioactive ν_e sources (⁵¹Cr and ³⁷Ar)
- Neutrino detection via $^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^-$
- Observation: Neutrino deficit (~ 3σ)

Giunti Laveder 1006.3244

Outline

Theoretical Motivation

Sterile Neutrino Oscillations: The Global Picture

Data sets included in our fit

$\overline{\nu}_{e}$ disappearance

- SBL reactor experiments
- LBL reactor experiments
- KamLAND
- Radioactive source (Ga) experiments
- Solar neutrinos
- Atmospheric neutrinos
- ν_e -¹²C scattering in KARMEN, LSND

$\overline{\nu}_{e}$ appearance

- LSND
- MiniBooNE
- KARMEN
- NOMAD
- ICARUS
- E776

$\overline{\nu}_{\mu}^{o}$ disappearance

- Atmospheric neutrinos (includes *either* $\overleftarrow{\nu}_e$ disapp. *or* full matter effects)
- MiniBooNE (includes oscillations of backgrounds)
- MINOS CC+NC (full n-flavour oscillations in matter)
- CDHS

$(\vec{\nu}_e \text{ disappearance in the 3+1 scenario})$

	$\sin^2 2\theta_{14}$	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$\chi^2_{\rm min}/{ m dof}~({ m GOF})$	$\Delta\chi^2_{ m no~osc}/ m dof$ (CL)
SBL rates only	0.13	0.44	11.5/17 (83%)	11.4/2 (99.7%)
SBL incl. Bugey3 spect.	0.10	1.75	58.3/74 (91%)	9.0/2 (98.9%)

$(\vec{\nu}_e \text{ disappearance in the 3+1 scenario})$

	$\sin^2 2\theta_{14}$	$\Delta m_{41}^2 [\mathrm{eV}^2]$	$\chi^2_{\rm min}/{ m dof}~({ m GOF})$	$\Delta\chi^2_{ m no \ osc}/ m dof$ (CL)
SBL rates only	0.13	0.44	11.5/17 (83%)	11.4/2 (99.7%)
SBL incl. Bugey3 spect.	0.10	1.75	58.3/74 (91%)	9.0/2 (98.9%)
SBL + Gallium	0.11	1.80	64.0/78 (87%)	14.0/2 (99.9%)
global ν_e disapp.	0.09	1.78	403.3/427 (79%)	12.6/2 (99.8%)

Impact of θ_{13}

- Sterile neutrinos do not impact θ₁₃ measurement
- $\theta_{13} \neq 0$ does not impact sterile neutrino search

$\overleftarrow{\nu}_{\mu}$ disappaearance in the 3+1 scenario

 Parameter regions favored by tentative hints are in tension with null results

$\overleftarrow{\nu}_{\mu}$ disappaearance in the 3+1 scenario

- Parameter regions favored by tentative hints are in tension with null results
- Constraints on $|U_{\tau4}| \sim \sin \theta_{34}$ possible due to NC events and matter effects

$\dot{\nu}_{\mu}$ disappaearance in the 3+1 scenario

- Parameter regions favored by tentative hints are in tension with null results
- Constraints on $|U_{\tau4}| \sim \sin \theta_{34}$ possible due to NC events and matter effects
- Complex phases important

JK Machado Maltoni Schwetz, in preparation

Joachim Kopp, MPIK

$(\vec{\nu}_e \text{ appearance in the 3+1 scenario and beyond})$

 Significant improvement in 3+2 and 1+3+1

	$\chi^2_{ m min}/ m dof$	GOF	
3+1	712/(689 - 9)	19%	

 3+1 Severe tension between appearance and disappearance and between exp's with and without a signal

	$\chi^2_{\rm min}/{ m dof}$	GOF	
3+1	712/(689 - 9)	19%	

3 + 1 Severe tension between appearance and disappearance and between

- 3 + 1 Severe tension between appearance and disappearance and between exp's with and without a signal
- 3+2 Fit improves considerably with two sterile neutrinos

JK Machado Maltoni Schwetz, in preparation

Parameter goodness of fit (PG) test: Compares $\chi^2_{\rm min}$ from global and separate fits to test compatibility of 2 data sets

	$\chi^2_{ m min}/ m dof$	GOF	$\chi^2_{\rm PG}/{ m dof}$	PG
3+1	712/(689 - 9)	19%	18.0/ <mark>2</mark>	1.2×10^{-4}
3+2	701/(689 - 14)	23%	25.8/4	$3.4 imes 10^{-5}$

- 3 + 1 Severe tension between appearance and disappearance and between exp's with and without a signal
- 3 + 2 Fit improves considerably with two sterile neutrinos
- 1 + 3 + 1 Further improvement, especially in appearance fit

Parameter goodness of fit (PG) test:

Compares χ^2_{min} from global and separate fits to test compatibility of 2 data sets

	$\chi^2_{\rm min}/{ m dof}$	GOF	$\chi^{\rm 2}_{\rm PG}/{ m dof}$	PG
3+1	712/(689 - 9)	19%	18.0/2	1.2×10^{-4}
3+2	701/(689 – 14)	23%	25.8/ <mark>4</mark>	$3.4 imes 10^{-5}$
1+3+1	694/(689 - 14)	30%	16.8/ <mark>4</mark>	$2.1 imes 10^{-3}$

Conclusion from oscillation fits: severe tension in all cases

Outline

Theoretical Motivation

2 Sterile Neutrino Oscillations: The Global Picture

4 Conclusions

Sterile neutrinos in cosmology

Models with $\mathcal{O}(eV)$ sterile neutrino(s) constrained by cosmology:

of relativistic species $N_{
u}>$ 3 mildly preferred

see e.g. Hinshaw et al. (WMAP-9), arXiv:1212.5226 Gonzalez-Garcia Maltoni Salvado, arXiv:1006.3795 Hamann Hannestad Raffelt Tamborra Wong, arXiv:1006:5276

Ways out:

- Large lepton asymmetry (≥ 0.01) → suppressed production
 Foot Volkas hep-ph/9508275 Chu Cirelli, astro-ph/0608206 Saviano et al., arXiv:1302.1200
- > 1 new relativistic degrees of freedom + w < -1 + $\mu_{\nu} \neq 0$

Hamann Hannestad Raffelt Wong, arXiv:1108.4136

• Couplings to a Majoron field \rightarrow suppressed production

Bento Berezhiani, hep-ph/0108064

A combined fit of oscillation data and cosmology

Archidiacono Fornengo Giunti Hannestad Melchiori arXiv:1302.6720

A combined fit of oscillation data and cosmology

Outline

Theoretical Motivation

2 Sterile Neutrino Oscillations: The Global Picture

Summary

- Sterile neutrinos are theoretically well motivated and phenomenologically useful
- Global fits shows severe tension between appearance and disappearance searches
 - Note: Different groups come to somewhat different conclusions
- Cosmological bounds strong, but can be avoided in several ways

Are there eV-scale sterile neutrinos? — Conclusions

Substantial tension in the global fit.

- Is one (or all) of the positive results not due to neutrino oscillations?
- Are some of the null results wrong?

(one being wrong is not enough!)

- Are there more than 2 sterile flavors?
- Are there sterile neutrinos plus something else?

The answer to these questions is a definite "we don't know ... yet"

Thank you!

Relation between appearance and disappearance

3 + 1 neutrinos

At large baseline ($L \gg 4\pi E / \Delta m_{41}^2$, but $L \ll 4\pi E / \Delta m_{31}^2$

$$\begin{aligned} P_{ee} &= 1 - 2|U_{e4}|^2(1 - |U_{e4}|^2) \\ P_{\mu\mu} &= 1 - 2|U_{\mu4}|^2(1 - |U_{\mu4}|^2) \\ P_{e\mu} &= 2|U_{e4}|^2|U_{\mu4}|^2 \end{aligned}$$

It follows

$$2P_{e\mu}\simeq (1-P_{ee})(1-P_{\mu\mu})$$

In the 3 + 1 case, at large enough baseline, there is a one-to-one relation between the appearance and disappearance probabilities.

Relation between appearance and disappearance 3 + 2 neutrinos

At large baseline ($L \gg 4\pi E / \Delta m_{41}^2$, but $L \ll 4\pi E / \Delta m_{31}^2$

$$\begin{aligned} P_{ee} &= 1 - 2 \Big[|U_{e4}|^2 (1 - |U_{e4}|^2) + |U_{e5}|^2 (1 - |U_{e5}|^2) - |U_{e4}|^2 |U_{e5}|^2 \Big] \\ P_{\mu\mu} &= 1 - 2 \Big[|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) + |U_{\mu5}|^2 (1 - |U_{\mu5}|^2) - |U_{\mu4}|^2 |U_{\mu5}|^2 \Big] \\ P_{e\mu} &= 2 \Big[|U_{e4}|^2 |U_{\mu4}|^2 + |U_{\mu4}|^2 |U_{\mu5}|^2 + \operatorname{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) \Big] \end{aligned}$$

Relation between appearance and disappearance 3 + 2 neutrinos

At large baseline ($L \gg 4\pi E / \Delta m_{41}^2$, but $L \ll 4\pi E / \Delta m_{31}^2$

$$\begin{aligned} P_{ee} &= 1 - 2 \Big[|U_{e4}|^2 (1 - |U_{e4}|^2) + |U_{e5}|^2 (1 - |U_{e5}|^2) - |U_{e4}|^2 |U_{e5}|^2 \Big] \\ P_{\mu\mu} &= 1 - 2 \Big[|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) + |U_{\mu5}|^2 (1 - |U_{\mu5}|^2) - |U_{\mu4}|^2 |U_{\mu5}|^2 \Big] \\ P_{e\mu} &= 2 \Big[|U_{e4}|^2 |U_{\mu4}|^2 + |U_{\mu4}|^2 |U_{\mu5}|^2 + \operatorname{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) \Big] \end{aligned}$$

It follows

$$\begin{split} & 2 P_{e\mu} \simeq (1 - P_{ee})(1 - P_{\mu\mu}) \\ & + 4 \Big[\text{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) + 4 |U_{e4}|^2 |U_{\mu5}|^2 + 4 |U_{e5}|^2 |U_{\mu4}|^2 \Big] \\ & = (1 - P_{ee})(1 - P_{\mu\mu}) - 2 \Big[|U_{e4}|^2 |U_{\mu5}|^2 + |U_{e5}|^2 |U_{\mu4}|^2 \Big] \\ & - 2 |U_{e4} U_{\mu5} - U_{e5} U_{\mu4}|^2 \end{split}$$

Relation between appearance and disappearance 3 + 2 neutrinos

At large baseline ($L \gg 4\pi E / \Delta m_{41}^2$, but $L \ll 4\pi E / \Delta m_{31}^2$

$$\begin{aligned} P_{ee} &= 1 - 2 \Big[|U_{e4}|^2 (1 - |U_{e4}|^2) + |U_{e5}|^2 (1 - |U_{e5}|^2) - |U_{e4}|^2 |U_{e5}|^2 \Big] \\ P_{\mu\mu} &= 1 - 2 \Big[|U_{\mu4}|^2 (1 - |U_{\mu4}|^2) + |U_{\mu5}|^2 (1 - |U_{\mu5}|^2) - |U_{\mu4}|^2 |U_{\mu5}|^2 \Big] \\ P_{e\mu} &= 2 \Big[|U_{e4}|^2 |U_{\mu4}|^2 + |U_{\mu4}|^2 |U_{\mu5}|^2 + \operatorname{Re}(U_{e4}^* U_{\mu4} U_{e5} U_{\mu5}^*) \Big] \end{aligned}$$

It follows

$$2P_{e\mu} \leq (1-P_{ee})(1-P_{\mu\mu})$$

Unlike in the 3 + 1 case, for 3 + 2 models, there is NO one-to-one relation between the appearance and disappearance probabilities.

However, there is an inequality, which can be used to set meaningful constraints.

The Giunti et al. fit

Includes the following data sets:

- $\overline{\nu}_{\mu}^{} \rightarrow \overline{\nu}_{e}^{}$ appearance data:
 - LSND
 - MiniBooNE (E > 475 MeV)
 - KARMEN
 - NOMAD
 - ICARUS
- $\overline{\nu}_{\mu}$ disappearance data:
 - CDHS
 - MINOS bound on |U_{µ4}|
- $\overline{\nu}_e$ disappearance data:
 - Reactor experiments
 - Gallium anomaly
 - Solar neutrinos
 - KamLAND
 - ▶ v_e-¹²C CC scattering in KARMEN and LSND

Archidiacono Fornengo Giunti Hannestad Melchiori arXiv:1302.6720 see also Giunti Laveder Li Liu Long arXiv:1210.5715 Giunti Laveder arXiv:1111.1069

The Giunti et al. fit (2)

APP/DIS curves: 3σ C.L.

Parameter goodness of fit (APP vs. DIS): 4%

Archidiacono Fornengo Giunti Hannestad Melchiori arXiv:1302.6720 see also Giunti Laveder Li Liu Long arXiv:1210.5715 Giunti Laveder arXiv:1111.1069

Differences between our fit and Giunti et al.

MiniBooNE fit

we use MB analysis based on official MC events, include BG oscillation

MINOS fit

we fit CC+NC data, including ND and FD, detector response matrices based on official MINOS MC

Reactor fit

minor differences in the data set, possibly different treatment of correlations among systematic uncertainties

LSND fit

Note that LSND spectral data is more constraining than the total count rate. We use this information; our fit is consistent with the numbers reported in hep-ex/0203023 (Church, Eitel, Mills, Steidl, combined LSND+KARMEN analysis)

Atmospheric neutrinos

Full fit vs. tabulated χ^2

The Karagiorgi et al. fit

Includes the following data sets:

- ${}^{(\nu)}_{\mu} \rightarrow {}^{(\nu)}_{e}$ appearance data:
 - LSND
 - MiniBooNE
 - KARMEN
 - NOMAD
- $\overline{\nu}_{\mu}^{}$ disappearance data:
 - MiniBooNE
 - ► Minos CC *u*_µ
 - CDHS
 - CCFR
 - Atmospheric neutrinos
- $(\vec{\nu})_e$ disappearance data:
 - Short baseline reactor experiments
 - Gallium experiments
 - v_e-¹²C CC scattering in KARMEN and LSND

Result

 χ^2 /dof and PG test results in qualitative agreement with ours

Conrad Ignarra Karagiorgi Shaevitz Spitz arXiv:1207.4765 Karagiorgi arXiv:1110.3735 Karagiorgi Djurcic Conrad Shaevitz Sorel arXiv:0906.1997