Super-Kamiokande

Yoichiro Suzuki,

Kamioka Observatory, Institute for Cosmic Ray Research (ICRR), the University of Tokyo

and

Kamioka Satellite, Institute for the Physcis and Mathematics of the Universe (IPMU), the University of Tokyo

Super-K will be 17 years old in this April Brief history of Super-Kamiokande

- 1996: SK started
- 1998: Discovery of Atmospheric Neutrino Oscillation
- 2001: Discovery of Solar Neutrino Oscillation (w/SNO)
- 2004: Confirmation of the atmospheric neutrino oscillation by K2K.
- 2004: Discovery of the oscillatory behavior of the atmospheric neutrinos
- + 2011: Indication of $\theta_{\rm 13}$ by T2K

Water Cherenkov 50,000 tons 11,129 PMTs 22.5 kt fiducial mass

SK Collaboration

		1998	2013		19	998	2013			
	ICRR	27	23		Boston	14	4			
	IPMU		2		BNL	1	1			
	Fukuoka Tech		1		Irvine	9	7			
	Gifu	1	1		California State	2	3			
	KEK	9	11		Duke		5			
	Kobe	3	2		George Mason	1				
	Kyoto		6		Hawaii	6	3			
	Miyagi	1	1		Los Alamos	1				
	Nagoya		4		Louisiana State	3				
	Niigata	8			Maryland	4				
	Okayama		5		Stony Brook	8	5			
	Osaka	5	1		Washington	6	3			
	Tohoku	13			Warsaw(Poland)	1	1			
	SW Shizuoka		1		UAM(Spain)		1			
	TOKYO	1	3							
	токуо тесп	5	 1		Chonnam(Korea)		3			
-	TOKAI	Z	<u>I</u>		Sungkyunkwan(Korea)		1			
	Japan	75	62		Tringhya(China)		1			
- 1		55	21		TSINgHya(China)		4			
	0JA	55	JI		Regina(Canada)		1			
	Poland	1	1		British C.(Canada)		3			
- 1	Spain		1		Toronto(Canada)		2			
	Korea		5		TRIUMF(Canada)		2			
	China		4	• T2K i	on					
	Canada		8	- Not all the SK collaborators are involved in T2K						
	Total	131	112	• New	countries (Spain, Ko	orea, (China, Canada) joined			
201	3/03/12		Y.Suzuki@	NeutrinoTe	elescope in Venetia					

Status of Super-K

- People might say that SK has finished the role.
- But not true
 - Last year our funding agency asked us to provide a plan of SK for the next 10 years
 - Many interesting subjects still to be solved
 - the number of collaborating institutions have increased for the last few years
 - Good to learn Water Cherenkov technology for future

10 years plan

MEXT asked us to provide 10 years plan of Super-Kamiokande

Subjects	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Supernova Relic v	Improve	water s	ystem						Disc	overy?
Entering a discovery region (expected flux : 10 ~22/cm ² /s)	sensitivity			4/cm ² /			3/cm²/s		\rightarrow	9/cm ² /s
Nearby SN neutrino burst		Impr	ove DAC	system						
World highest sensitivity			Con	tinuous	, bbservat	ion				
Mass hierarchy								Identif	ication o	f MH ?
Precise measurement of atmospheric v	sensitivity	,	 >	2.0σ		 >	2.3σ		 >	2.5σ
Indication of CP Violation ?	v _e appea	rance U	pgrade J	-PARC(7	50kW)		omhine	esults fi	om reac	tor exp
Look for v_e appearance in SK/T2K(J-PARC)					/^			In	dication	hf CP 2
Sterile neutrinos ?	Reduce	backgro	unds				Indicati	on of ste	rile neu	trinos ?
Precise measurement of solar neutrinos	sensitivity		├ →	2.2 σ		→	2.7 σ		→	3.00
Nucleon decay search										
World highest sensitivity			Test of gra	nd unifie	d theories		S	ensitivity	2.1x10 ³⁴	yrs
Search for dark matter				Sensitiv	e to low	mass W	IMPs			
Neutrinos from the sun, the earth and so on							Im	orove sen	sitivity by	factor 2
2013/03/12	Y.Su	zuki@Nei	utrinoTele	scope in V	'enetia					- 5

Energy Range

- Trigger (Software):
 - 50% efficiency @ 3.3MeV
 - -100% eff. for $E_{kin} > 4.0$ MeV
- Trigger Rate
 - 3.5 kHz

- Solar neutrinos (< 15 MeV): ~15 events /day
- Supernova v's (10~20 MeV): ~8000 events @10 kpc
- Atmospheric Neutrinos (< a few 100s GeV):
 - ~10 events /day
 - 6 p.e. / MeV
 - Resolution (solar/supernova v)14.2% @10MeV (atmospheric v)1.7+0.7/<u>E(GeV)</u>% (single ring μ)

Data Accumulated

Phase	SK-I	SK-II	SK-III	SK-IV	Total
Periods	96-Apr ∼01-Jun	02-Dec ~05-Nov	06-Jul ∼08-Sep	08-Sep ∼running	
ID PMTs	11,146 (40%)	5,182 (19%)	11,129 (40%)	11,129 (40%)	
Electronics	ATM	ATM	ATM	QBEE	
Trigger	Hardware	Hardware	Hardware	Software	
Atm v FC+PC (days)	1489 days	799 days	518 days	1097 days (< '12 Mar)	3903 days (< '12 Mar)
(# of ev.)	12,299+902	6,610+427	4,355+344	8,929+735	32,193+2,408
Atm ν up-μ (days)	1646 days	828 days	636 days	1097 days (< '12 Mar)	4207 days (< '12 Mar)
(# of ev.)	2,328	1,094	945	1,651	6,018
Solar v (days)	1496 days	791 days	547.9 days	1069.3 days (< '12 Mar)	3904 days (< '12 Mar)
(# of ev.)	22,404 ev.	7,212.8 ev.	8,147.9 ev.	19,809.4 ev.	57,574.1 ev.
Proton 91.7 kt•yr decay		49.2 kt•yr	31.9 kt•yr	46.5 kt∙yr (< '11 Mar)	220 kt•yr

2013/03/12

Electronics update (SK-IV)

- QBEE(QTC-Based Electronics with Ethernet)
 - width of the output time pulse represent the integrated charge
 - Dynamic range: 0.2 2500 pC
 - 5 times better than the previous one
- Record every hit + software trigger
 - Higher efficiency for $\mu \rightarrow e$ decay
 - Detection of delayed 2.2 MeV γ-rays after neutron captures
- High event process:
 - Up to 6 Million events /sec without any event loss.
 - 100 times better than the previous one

Neutrino Oscillation

Super-K have not only discovered the neutrino oscillation, but also played the essential roles in discovering all the mixing angles.

Remaining Issues

- Octant of θ_{23} (if $\theta_{23} \neq \pi/4$); Mass hierarchy (sign of Δm_{13}^2), CPV
 - SK atmospheric three flavor analysis may give some hints in near future

2013/03/12

Y.Suzuki@NeutrinoTelescope in Venetia

Atmospheric Neutrinos

- Wide range of baseline: 10 km ~ 13,000 km
- 5 orders of magnitude of energy range: $0.1 \text{ GeV} \sim 10 \text{ TeV}$
- Variety of Matter Effect
- Four neutrino sources: $u_{\mu}, ar{
 u}_{\mu},
 u_{e}, ar{
 u}_{e}$

- Many Event Categories
 - Energy, topology, # of Rings, # of decay electrons, e-like, μ-like, ...
- 18 Categories
 - 480 momentum/zenith angle bins (as of March, 2012) are used for the fits

Good to identify best suitable events for different kinds of oscillation studies

Atmospheric Neutrinos

2013/03/12

Y.Suzuki@NeutrinoTelescope in Venetia

Three flavor analysis v_e appearance in atmospheric-v

$$\frac{\Psi(\nu_{e})}{\Psi_{0}(\nu_{e})} - 1 \cong \frac{P_{2}(r \cdot c_{23}^{2} - 1)}{-r \cdot \tilde{s}_{13} \cdot \tilde{c}_{13}^{2} \cdot \sin 2\vartheta_{23}(\cos \delta_{CP} \cdot R_{2} - \sin \delta_{CP} \cdot I_{2})} + 2\tilde{s}_{13}^{2}(r \cdot s_{23}^{2} - 1)$$

$$\stackrel{\sim}{\to} \frac{P_{2}(r \cdot c_{23}^{2} - 1)}{-r \cdot \tilde{s}_{13}(r \cdot s_{23}^{2} - 1)} \stackrel{\sim}{\to} \frac{P_{2}(r \cdot c_{23}^{2} - 1)}{-r \cdot \tilde{s}_{13}(r \cdot s_{23}^{2} - 1)}$$

Three flavor analysis ν_e appearance in atmospheric- ν

$$\frac{\Psi(\nu_e)}{\Psi_0(\nu_e)} - 1 \cong \frac{P_2(r \cdot c_{23}^2 - 1)}{-r \cdot \widetilde{s}_{13} \cdot \widetilde{c}_{13}^2 \cdot \sin 2\vartheta_{23} (\cos \delta_{CP} \cdot R_2 - \sin \delta_{CP} \cdot I_2)} + 2\widetilde{s}_{13}^2 (r \cdot s_{23}^2 - 1)$$

 3^{rd} term: θ_{13} term, Matter Effect Resonance for neutrinos + Normal MH antineutrinos + Inverted MH 5~15% effect

2nd term: Interference: CP-Phase

➔ Multi-GeV sample

Multi-GeV sample

- Resonance Effects: 5~15%, Normal MH > Inverted MH
- Difference for MH is larger for $\cos^2\theta_{23} > 0.5$
- CP difference is ~1~2 % for SK \rightarrow difficult to measure
- For MH → SK may indicate ~2σ level effect in a few more years if 'the parameters are lucky for us'
- Since MH is a kind of on/off, therefore 2~3 experiments showing 2~3σ effect may be enough to determine!

We have made $v_e (v_e)$ enhanced samples $v_e \rightarrow \text{larger y=(E-E')/E}$ $\rightarrow \text{larger # of } \pi$ $\rightarrow \text{diff. # of decay-e}$

Current situation of atmospheric v θ_{23} Octant

•

Super-Kamiokande atmospheric neutrino 3 flavor analysis

- $--- \theta_{13}$ free in the fitting
- --- θ_{13} fixed at the best value

We may start to see 1 σ level effect ??

Normal Mass Hierarchy •

Current situation of atmospheric v Mass Hierarchy and CP phase

 Details and other subjects of atmospheric neutrinos will be discussed by Chris in this afternoon

To reduce backgrounds Tight fiducial volume cut

- Usual fiducial volume (> 5.0 MeV): 22.5 kt
- Need a limited fiducial volume for low energy to reduce backgrounds

- Keep Rn at the lower level of the water tank
 - Need to avoid convection of the inner water
- Make Acrylic vessel to prevent Rn from sneaking into the fiducial volume
- 2013/03/12 Good and necessary also for the Gadzooks project

Solar neutrinos

Flux measurements

- Many Improvement for the last few years (systematic errors)
 - Total 3.5% → 1.7%
 - Fiducial volume: $1.3\% \rightarrow 0.17\%$
 - Energy scale: 0.64% → 0.54%
 - Others

Global Analysis (fixed: $sin^2\theta_{13} = 0.025$)

Solar Global (SK Analysis) $\sin^2 \theta_{12} = 0.310^{+0.014}_{-0.015}$ $\Delta m_{12}^2 = 4.86^{+1.44}_{-0.52} \times 10^{-5} eV^2$

KamLAND

$\sin^2 heta_{12}$	$= 0.309^{+0.039}_{-0.029}$
$\Delta m_{12}{}^2$	$= 7.49^{+0.20}_{-0.19} \times 10^{-5} eV^2$

• 1.5 σ difference between KamLAND and solar neutrino experiments in Δm_{12}^2

Day/Night Asymmetry

- Regeneration of v_e through the earth:
- A_{DN}=2(D-N)/(D+N)
 ~2~3% effect
- Night-time spectrum variation depends on Δm₁₂→Results (data) depend on Δm₁₂
- Δm₁₂ from D/N analysis agree better with that from the solar global analysis

- SK-I, II, III, IV data
- $A_{ND} = -2.8 \pm 1.1 \pm 0.5\%$ $\rightarrow 2.3 \sigma$

Supernova Neutrinos

- Burst search
 - − Nearby SN → Detailed Explosion Mechanism
 - ➔ Additional information for Neutrino Oscillation
 - Mostly $\overline{\nu}_{\rm e}$ + p \rightarrow e^+ + n and $\nu_{\rm x}$ e \rightarrow $\nu_{\rm x}$ e interactions
 - Event by event reconstruction, time, energy and directionality(only for $v_x e$)
 - Expect 8000 neutrino events from the SN at 10 kpc
 - 2x10⁷ neutrinos for Betelgeuse (640 light years)
 - Currently upgrading the electronics; 1) Sparse data taking, 2) energy flow
- SNWATCH: Continuous data taking
 - Minimizing dead time
 - Less down time for calibration
- SNEWS (Supernova Early Warning System)
 - Neutrino arrives 20-40 hours before the optical observation for Betelgeuse
 - Early warning to the observatories world wide
- We are preparing for the next Galactic Supernova 2013/03/12 Y.Suzuki@NeutrinoTelescope in Venetia

SRN(Supernova Relic Neutrinos)

the diffuse supernova neutrino background from all the supernovae in the past

SK result on SRN

Future Project GadZOOKs!

- To detect SRN
 - Need to reduce BG
- Gadzooks: to identify neutrons in $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Coincidence of e⁺ and n
- 0.2% Gd sulfate
 - 49,000 barns (5 order larger than *p*) for thermal cap.
 - γ cascade of 8 MeV
 - $\ \Delta t \sim 20 \ \mu s$

- R&D: EGADS (2009 ~): Test Facility
 - 200 ton main tank
 - Selective filtration system
 - Cleaning unwanted impurities
 - Keep Gd in the water
 - Transparency measurement
- Currently Gd doped water is circulated by increasing the Gd concentration gradually
- In summer, the 240 PMTs will be mounted
- Full test w/ the PMT will be done in Fall, 2013.

Merits of GadZOOKs

Supernova Relic Neutrinos

- Assume 1/5 reduction of the backgrounds (efficiency for neutron capture: 90% and cut efficiency 74%)
- → We expect 20~40 SRN events between 10 and 30 MeV for T_{eff} = SN1987A
- \rightarrow More events for larger T_{eff}

|--|

						· · · / · · · · ·	/			
	Burnig Phase	T _c [MeV]	L _v [erg/s]	Duration	Total energy [erg]	Average ∨ energy [MeV]	Ev. Rate for SK day-1			
	С	0.07	7.4x10 ³⁹	300 yrs	7x10 ⁴⁹	0.71				
	Ne	0.146	1.2x10 ⁴³	140 days	1.4x10 ⁵⁰	0.99				
Si-burning	0	0.181	7.4x10 ⁴³	180 days	1.2x10 ⁵¹	1.13				
for 20x M _o	Si	0.319	3.1x10 ⁴⁵	x10 ⁴⁵ 2 days 5.4x10 ⁵⁰ 1.85						
 For Betelgeuse (0.2 kpc), expect 1000 events / day > difficult to detect e⁺ from v_e+p→ e⁺+n, but 										
\blacktriangleright easy to observe 8 MeV γ' s from neutron capture										
2013/03/12 V Suzuki@NeutrinoTelescope in Venetia										

Nucleon Decay

 $p \rightarrow e^+ \pi^0$ $n \rightarrow e^+ \pi^$ $p \rightarrow \mu^+ \pi^0$ $n \rightarrow \mu^+ \pi^$ $p \rightarrow v \pi^+$ $n \rightarrow v \pi^0$ $p \rightarrow e^+ \eta$ $p \rightarrow \mu^+ \eta$ $n \rightarrow v n$ $p \rightarrow e^+ \rho^0$ $n \rightarrow e^+ \rho^$ $p \rightarrow \mu^+ \rho^0$ $n \rightarrow \mu^+ \rho^$ $p \rightarrow v \rho^+$ $n \rightarrow v \rho^0$ $p \rightarrow e^+ \omega$ $p \rightarrow \mu^+ \omega$ $n \rightarrow v \omega$ $p \rightarrow e^+ K^0$ $n \rightarrow e^+ K^$ $n \rightarrow e^{-}K^{+}$ $p \rightarrow \mu^+ K^0$ $n \rightarrow \mu^+ K^$ $p \rightarrow v K^+$ $n \rightarrow v K^0$

Nucleon Decay

- Background level < 1 in many decay modes

 Sensitivity: proportional to the exposure in future
- We continue to search for proton decay

Summary

- After the discovery of the neutrino oscillations we have further developed the oscillation study.
 - Precisely determined oscillation parameters (atmospheric and solar neutrinos)
 - Obtained evidence for tau appearance and tested CPT in atmospheric $\boldsymbol{\nu}$
 - Obtained positive indication of Day/Night effect (solar v)
 - Made many efforts to reduce low energy backgrounds
 - Improved the machinery for detecting nearby SN burst
 - Mostly finished the the feasibility study of GadZOOKs

17 year old Super-K is still very active

- We will continue data taking at least for the next ten years
 - to study MH, CPV, upturn
 - to observe SN Relic neutrinos
 - to look for neutrino bursts from SNe and protons to decay
- We hope that we will hand them to Hyper-Kamiokande in very near future

2013/03/12